로그인

Contractile rings are composed of microfilaments and are responsible for separating the daughter cells during cytokinesis. Contractile ring assembly proceeds along with other cell cycle events; however, very few mechanistic details are known about the timing and coordination of the contractile rings with the cell cycle.

A small GTPase, RhoA, controls the function and assembly of the contractile ring. RhoA belongs to the Ras superfamily of proteins. The activation of formins by RhoA promotes actin filament formation, whereas the activation of multiple protein kinases by RhoA stimulates the myosin II assembly and contraction. The kinases phosphorylate the myosin light chain and stimulate filament formation and motor activity. In addition to actin and myosin II (actomyosin), septin filaments are also involved in contractile ring formation. Septin filaments stabilize the contractile ring and play an important role in yeast cytokinesis.

The activation of RhoA is regulated by a guanine nucleotide exchange factor (Rho-GEF). This protein is found in the cortex region, which is the site of future cell division. The inactive form of RhoA is bound to GDP. Rho-GEF exchanges the GDP bound to RhoA with GTP. The binding of GTP activates RhoA, which in turn triggers the formation of contractile rings.

RhoA also regulates the activity of the scaffold protein anillin, an essential player in contractile ring formation. While RhoA is considered the principal activator for the assembly of the contractile ring, anillin acts as the main organizer for the ring by binding with actin, myosin II, membrane phospholipids, septin, and other structural and regulatory components involved in contractile ring formation.

The continuous shrinkage of the contractile ring means it progressively needs a smaller number of actomyosin filaments to form a ring of the same thickness; therefore, concomitant disassembly of the actomyosin filaments occurs as the ring contracts. During the final stages of the cytokinesis, the contractile ring and the central spindle containing compact microtubules matures to form the midbody and the midbody ring. The midbody ring then carries out the abscission of the parent cell, resulting in the formation of two daughter cells.

Tags

Contractile RingMicrofilamentsCytokinesisGTPaseRhoARas SuperfamilyForminsActin Filament FormationProtein KinasesMyosin II AssemblyMyosin Light Chain PhosphorylationSeptin FilamentsGuanine Nucleotide Exchange Factor Rho GEFGDPGTPAnillinScaffold Protein

장에서 18:

article

Now Playing

18.14 : The Contractile Ring

세포의 분열

6.1K Views

article

18.1 : 유사분열(Mitosis)과 사이토키네시스(Cytokinesis)

세포의 분열

20.3K Views

article

18.2 : 염색질 구조의 복제

세포의 분열

5.2K Views

article

18.3 : 코헤신

세포의 분열

4.2K Views

article

18.4 : 응축수

세포의 분열

3.2K Views

article

18.5 : 유사 분열 스핀들

세포의 분열

6.1K Views

article

18.6 : 중심솜 복제

세포의 분열

3.8K Views

article

18.7 : 미세소관 불안정성

세포의 분열

4.9K Views

article

18.8 : 스핀들 어셈블리

세포의 분열

3.4K Views

article

18.9 : 자매 염색체의 부착

세포의 분열

3.0K Views

article

18.10 : 염색체에 작용하는 힘

세포의 분열

3.3K Views

article

18.11 : 자매 염색분체의 분리

세포의 분열

3.5K Views

article

18.12 : 스핀들 어셈블리 체크포인트

세포의 분열

3.1K Views

article

18.13 : 아나페이즈 A 및 B

세포의 분열

3.8K Views

article

18.15 : 세포 분열의 평면 결정

세포의 분열

3.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유