登录

The theory of catalytically perfect enzymes was first proposed by W.J. Albery and J. R. Knowles in 1976. These enzymes catalyze biochemical reactions at high-speed. Their catalytic efficiency values range from 108-109 M-1s-1. These enzymes are also called 'diffusion-controlled'as the only rate-limiting step in the catalysis is that of the substrate diffusion into the active site. Examples include triose phosphate isomerase, fumarase, and superoxide dismutase.

Most enzymes achieve catalytic perfection due to the charged groups present on their surface that orient and steer the substrate into the active site. Some other enzymes have a specific active site arrangement, contributing to catalytic perfection. In enzymes such as superoxide dismutase, metal ions, such as copper and zinc, in the active site and charged amino acids, such as arginine, close to the active site speed up the conversion of superoxide anion into oxygen and hydrogen peroxide. Random mutations in enzymes favor such interactions with their substrates, and enzymes with higher efficiency are naturally selected over time.

Perfect enzymes not only catalyze highly efficient reactions but can also help protect cells from harmful reaction intermediates. For example, triose phosphate isomerase (TPI) is an enzyme in the glycolytic pathway that catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). The slow conversion of DHAP into G3P forms an enediol intermediate that eventually decomposes into a toxic compound. As TPI is a catalytically perfect enzyme, it speeds up the reaction and quickly transforms the intermediate into the product, avoiding undesirable compounds. So far, very few enzymes have evolved to be catalytically perfect. Most enzymes are moderately efficient.

Tags
Catalytically Perfect EnzymesCatalytic EfficiencyDiffusion controlledTriose Phosphate IsomeraseFumaraseSuperoxide DismutaseActive SiteMetal IonsCharged Amino AcidsGlycolytic PathwayDihydroxyacetone PhosphateGlyceraldehyde 3 phosphateEnediol Intermediate

来自章节 3:

article

Now Playing

3.15 : Catalytically Perfect Enzymes

Energy and Catalysis

3.8K Views

article

3.1 : 热力学第一定律

Energy and Catalysis

5.2K Views

article

3.2 : 热力学第二定律

Energy and Catalysis

4.8K Views

article

3.3 : 细胞内焓

Energy and Catalysis

5.6K Views

article

3.4 : Cell 内的熵

Energy and Catalysis

10.1K Views

article

3.5 : 自由能源简介

Energy and Catalysis

7.9K Views

article

3.6 : 细胞内的内能和能能反应

Energy and Catalysis

13.9K Views

article

3.7 : 平衡结合常数和结合强度

Energy and Catalysis

8.9K Views

article

3.8 : 自由能和平衡

Energy and Catalysis

5.9K Views

article

3.9 : 单元中的非平衡

Energy and Catalysis

4.0K Views

article

3.10 : 有机分子的氧化和还原

Energy and Catalysis

5.7K Views

article

3.11 : 酶简介

Energy and Catalysis

16.4K Views

article

3.12 : 酶和活化能

Energy and Catalysis

11.2K Views

article

3.13 : 酶动力学简介

Energy and Catalysis

19.2K Views

article

3.14 : 周转次数和催化效率

Energy and Catalysis

9.6K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。