Zaloguj się

The theory of catalytically perfect enzymes was first proposed by W.J. Albery and J. R. Knowles in 1976. These enzymes catalyze biochemical reactions at high-speed. Their catalytic efficiency values range from 108-109 M-1s-1. These enzymes are also called 'diffusion-controlled'as the only rate-limiting step in the catalysis is that of the substrate diffusion into the active site. Examples include triose phosphate isomerase, fumarase, and superoxide dismutase.

Most enzymes achieve catalytic perfection due to the charged groups present on their surface that orient and steer the substrate into the active site. Some other enzymes have a specific active site arrangement, contributing to catalytic perfection. In enzymes such as superoxide dismutase, metal ions, such as copper and zinc, in the active site and charged amino acids, such as arginine, close to the active site speed up the conversion of superoxide anion into oxygen and hydrogen peroxide. Random mutations in enzymes favor such interactions with their substrates, and enzymes with higher efficiency are naturally selected over time.

Perfect enzymes not only catalyze highly efficient reactions but can also help protect cells from harmful reaction intermediates. For example, triose phosphate isomerase (TPI) is an enzyme in the glycolytic pathway that catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). The slow conversion of DHAP into G3P forms an enediol intermediate that eventually decomposes into a toxic compound. As TPI is a catalytically perfect enzyme, it speeds up the reaction and quickly transforms the intermediate into the product, avoiding undesirable compounds. So far, very few enzymes have evolved to be catalytically perfect. Most enzymes are moderately efficient.

Tagi
Catalytically Perfect EnzymesCatalytic EfficiencyDiffusion controlledTriose Phosphate IsomeraseFumaraseSuperoxide DismutaseActive SiteMetal IonsCharged Amino AcidsGlycolytic PathwayDihydroxyacetone PhosphateGlyceraldehyde 3 phosphateEnediol Intermediate

Z rozdziału 3:

article

Now Playing

3.15 : Catalytically Perfect Enzymes

Energy and Catalysis

3.8K Wyświetleń

article

3.1 : Pierwsza zasada termodynamiki

Energy and Catalysis

5.2K Wyświetleń

article

3.2 : Druga zasada termodynamiki

Energy and Catalysis

4.8K Wyświetleń

article

3.3 : Entalpia w komórce

Energy and Catalysis

5.6K Wyświetleń

article

3.4 : Entropia w komórce

Energy and Catalysis

10.1K Wyświetleń

article

3.5 : Wprowadzenie do darmowej energii

Energy and Catalysis

7.9K Wyświetleń

article

3.6 : Reakcje endergoniczne i egzergoniczne w komórce

Energy and Catalysis

13.9K Wyświetleń

article

3.7 : Stała wiązania równowagi i siła wiązania

Energy and Catalysis

8.9K Wyświetleń

article

3.8 : Darmowa energia i równowaga

Energy and Catalysis

5.9K Wyświetleń

article

3.9 : Nierównowaga w komórce

Energy and Catalysis

4.0K Wyświetleń

article

3.10 : Utlenianie i redukcja cząsteczek organicznych

Energy and Catalysis

5.7K Wyświetleń

article

3.11 : Wprowadzenie do enzymów

Energy and Catalysis

16.4K Wyświetleń

article

3.12 : Enzymy i energia aktywacji

Energy and Catalysis

11.2K Wyświetleń

article

3.13 : Wprowadzenie do kinetyki enzymów

Energy and Catalysis

19.2K Wyświetleń

article

3.14 : Liczba obrotów i wydajność katalityczna

Energy and Catalysis

9.6K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone