登录

The arithmetic mean is usually skewed towards the larger values in the data set. Therefore, to avoid this inherent bias towards smaller values, the harmonic mean is used.

Take the example of the speed of a car, which is the measure of the rate of distance traveled. If the vehicle traverses the same distance back-and-forth, its average speed equals the total distance traveled divided by the total time taken. However, if the car moves with varying speeds, then the arithmetic mean is more skewed towards the larger value. Therefore, the arithmetic mean of the reciprocal speed is first calculated. Then, this quantity’s reciprocal is determined, also referred to as the harmonic mean of the original quantity.

Physical quantities with zero values should not be considered for calculating the harmonic mean because division by zero is undefined.

It can be shown that the harmonic mean of a data set with distinct positive values is always smaller than its geometric mean, which in turn is smaller than its arithmetic mean.

Tags
Harmonic MeanArithmetic MeanSpeedDistanceTimeReciprocalGeometric MeanPhysical QuantitiesZero Values

来自章节 3:

article

Now Playing

3.4 : Harmonic Mean

中心趋势测量

3.0K Views

article

3.1 : 什么是中心趋势?

中心趋势测量

13.8K Views

article

3.2 : 算术平均值

中心趋势测量

13.1K Views

article

3.3 : 几何平均数

中心趋势测量

3.3K Views

article

3.5 : 修剪平均值

中心趋势测量

2.8K Views

article

3.6 : 加权平均数

中心趋势测量

4.8K Views

article

3.7 : 均方根

中心趋势测量

3.2K Views

article

3.8 : 频率分布的平均值

中心趋势测量

15.0K Views

article

3.9 : 什么是模式?

中心趋势测量

17.0K Views

article

3.10 : 中位数

中心趋势测量

16.8K Views

article

3.11 : 中频

中心趋势测量

3.5K Views

article

3.12 : 偏度

中心趋势测量

9.9K Views

article

3.13 : 偏度的类型

中心趋势测量

10.2K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。