サインイン

The arithmetic mean is usually skewed towards the larger values in the data set. Therefore, to avoid this inherent bias towards smaller values, the harmonic mean is used.

Take the example of the speed of a car, which is the measure of the rate of distance traveled. If the vehicle traverses the same distance back-and-forth, its average speed equals the total distance traveled divided by the total time taken. However, if the car moves with varying speeds, then the arithmetic mean is more skewed towards the larger value. Therefore, the arithmetic mean of the reciprocal speed is first calculated. Then, this quantity’s reciprocal is determined, also referred to as the harmonic mean of the original quantity.

Physical quantities with zero values should not be considered for calculating the harmonic mean because division by zero is undefined.

It can be shown that the harmonic mean of a data set with distinct positive values is always smaller than its geometric mean, which in turn is smaller than its arithmetic mean.

タグ
Harmonic MeanArithmetic MeanSpeedDistanceTimeReciprocalGeometric MeanPhysical QuantitiesZero Values

章から 3:

article

Now Playing

3.4 : Harmonic Mean

中心傾向の測定

3.0K 閲覧数

article

3.1 : セントラルテンデンシーとは?

中心傾向の測定

13.8K 閲覧数

article

3.2 : 算術平均

中心傾向の測定

13.1K 閲覧数

article

3.3 : 相乗平均

中心傾向の測定

3.3K 閲覧数

article

3.5 : トリム平均

中心傾向の測定

2.8K 閲覧数

article

3.6 : 加重平均

中心傾向の測定

4.8K 閲覧数

article

3.7 : 二乗平均平方根

中心傾向の測定

3.2K 閲覧数

article

3.8 : 度数分布からの平均

中心傾向の測定

15.0K 閲覧数

article

3.9 : モードとは?

中心傾向の測定

17.0K 閲覧数

article

3.10 : 中央値

中心傾向の測定

16.8K 閲覧数

article

3.11 : ミッドレンジ

中心傾向の測定

3.5K 閲覧数

article

3.12 : 歪度

中心傾向の測定

9.9K 閲覧数

article

3.13 : 歪度の種類

中心傾向の測定

10.2K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved