登录

Most solids and liquids are incompressible—their densities remain constant throughout. In the presence of an external force, the molecules tend to restore to their original positions, which is only possible because the constituents interact. The interactions help the constituents pass on information about external disturbances, like sound waves. Therefore, sound waves travel faster through these media. Compared to solids, the constituents in a liquid are less tightly bound. Thus, sound waves are relatively slower in liquids than in solids. Moreover, in solids, sound waves are not purely longitudinal; they also travel in the lateral direction.

The speed of sound in solids and liquids can be derived by applying Newton’s laws of motion on a column of the medium of propagation. Generally, the speed of sound in a solid or liquid is the square root of the ratio of the force restoring the particles to their equilibrium position, to the inertia resisting the restoration. The square root can be understood by recalling that the speed term appears as a square in the linear wave equation. The Young’s modulus determines the restoring force in solids, and its density determines the inertia. Hence, the speed of sound in a solid is the square root of its Young’s modulus divided by the density. Similarly, in liquids, the speed of sound is given by the square root of its Bulk modulus divided by its density.

Since density varies with temperature, the speed of sound in any solid or liquid medium implicitly varies with temperature.

This text is adapted from Openstax, University Physics Volume 1, Section 17.2: Speed of Sound.

Tags
Speed Of SoundSolidsLiquidsIncompressibleMolecular InteractionsSound WavesYoung s ModulusBulk ModulusDensityNewton s Laws Of MotionEquilibrium PositionWave EquationTemperature Variation

来自章节 17:

article

Now Playing

17.4 : Speed of Sound in Solids and Liquids

Sound

2.7K Views

article

17.1 : 声波

Sound

7.1K Views

article

17.2 : 压力波的声音

Sound

1.0K Views

article

17.3 : 对声波的感知

Sound

4.4K Views

article

17.5 : 气体中的声速

Sound

2.8K Views

article

17.6 : 推导液体中的声速

Sound

433 Views

article

17.7 : 声强

Sound

4.0K Views

article

17.8 : 声强级

Sound

4.0K Views

article

17.9 : 声波的强度和压力

Sound

974 Views

article

17.10 : 声波:干扰

Sound

3.6K Views

article

17.11 : 干扰:光程

Sound

1.2K Views

article

17.12 : Sound Waves: Resonance

Sound

2.5K Views

article

17.13 :

Sound

436 Views

article

17.14 : 多普勒效应 - I

Sound

3.4K Views

article

17.15 : 多普勒效应 - II

Sound

3.3K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。