Sign In

Most solids and liquids are incompressible—their densities remain constant throughout. In the presence of an external force, the molecules tend to restore to their original positions, which is only possible because the constituents interact. The interactions help the constituents pass on information about external disturbances, like sound waves. Therefore, sound waves travel faster through these media. Compared to solids, the constituents in a liquid are less tightly bound. Thus, sound waves are relatively slower in liquids than in solids. Moreover, in solids, sound waves are not purely longitudinal; they also travel in the lateral direction.

The speed of sound in solids and liquids can be derived by applying Newton’s laws of motion on a column of the medium of propagation. Generally, the speed of sound in a solid or liquid is the square root of the ratio of the force restoring the particles to their equilibrium position, to the inertia resisting the restoration. The square root can be understood by recalling that the speed term appears as a square in the linear wave equation. The Young’s modulus determines the restoring force in solids, and its density determines the inertia. Hence, the speed of sound in a solid is the square root of its Young’s modulus divided by the density. Similarly, in liquids, the speed of sound is given by the square root of its Bulk modulus divided by its density.

Since density varies with temperature, the speed of sound in any solid or liquid medium implicitly varies with temperature.

This text is adapted from Openstax, University Physics Volume 1, Section 17.2: Speed of Sound.

Tags
Speed Of SoundSolidsLiquidsIncompressibleMolecular InteractionsSound WavesYoung s ModulusBulk ModulusDensityNewton s Laws Of MotionEquilibrium PositionWave EquationTemperature Variation

From Chapter 17:

article

Now Playing

17.4 : Speed of Sound in Solids and Liquids

Sound

2.7K Views

article

17.1 : גלי קול

Sound

7.1K Views

article

17.2 : צליל כגלי לחץ

Sound

1.0K Views

article

17.3 : תפיסה של גלי קול

Sound

4.4K Views

article

17.5 : מהירות הקול בגזים

Sound

2.8K Views

article

17.6 : הפקת מהירות הקול בנוזל

Sound

433 Views

article

17.7 : עוצמת קול

Sound

4.0K Views

article

17.8 : רמת עוצמת קול

Sound

4.0K Views

article

17.9 : עוצמה ולחץ של גלי קול

Sound

974 Views

article

17.10 : גלי קול: הפרעות

Sound

3.6K Views

article

17.11 : הפרעות: אורכי נתיב

Sound

1.2K Views

article

17.12 : גלי קול: תהודה

Sound

2.5K Views

article

17.13 : פעימות

Sound

436 Views

article

17.14 : אפקט דופלר - I

Sound

3.4K Views

article

17.15 : אפקט דופלר - II

Sound

3.3K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved