登录

The dipole moment of a bond is the product of the partial charge on either atom and the distance between them. Dipole moments influence the efficiency of IR absorption and the peak intensity. When a bond with a dipole moment is placed in an electric field, the direction of the field determines if the bond is compressed or stretched. Electromagnetic radiation consists of an electric field component that rapidly reverses direction. It follows that polar bonds are alternately stretched and compressed.

If the frequency of this bond stretching and compressing matches the natural vibration frequency of the bond, IR energy can be absorbed by the bond. Such vibrations are said to be IR-active. When a symmetrical bond with zero dipole moment vibrates, there is no change in dipole moment, meaning that energy is not absorbed. These vibrations are considered IR-inactive. This is evident in asymmetrical alkenes, where the C=C stretching vibrations are IR-active and show strong absorption bands. However, in symmetrical alkenes with zero dipole moment, the C=C stretching band is absent.

It also follows that a greater change in the dipole moment results in stronger IR absorptions with high-intensity bands. This is why C=O bonds (with a large dipole moment) show higher intensity absorption bands than C=C bonds (with small dipole moments).

来自章节 13:

article

Now Playing

13.13 : IR Spectrum Peak Intensity: Dipole Moment

Molecular Vibrational Spectroscopy

555 Views

article

13.1 : Infrared (IR) Spectroscopy: Overview

Molecular Vibrational Spectroscopy

1.2K Views

article

13.2 : IR Spectroscopy: Molecular Vibration Overview

Molecular Vibrational Spectroscopy

1.6K Views

article

13.3 : IR Spectroscopy: Hooke's Law Approximation of Molecular Vibration

Molecular Vibrational Spectroscopy

936 Views

article

13.4 : IR Spectrometers

Molecular Vibrational Spectroscopy

893 Views

article

13.5 : IR Spectrum

Molecular Vibrational Spectroscopy

746 Views

article

13.6 : IR Absorption Frequency: Hybridization

Molecular Vibrational Spectroscopy

539 Views

article

13.7 : IR Absorption Frequency: Delocalization

Molecular Vibrational Spectroscopy

609 Views

article

13.8 : IR Frequency Region: X–H Stretching

Molecular Vibrational Spectroscopy

831 Views

article

13.9 : IR Frequency Region: Alkyne and Nitrile Stretching

Molecular Vibrational Spectroscopy

689 Views

article

13.10 : IR Frequency Region: Alkene and Carbonyl Stretching

Molecular Vibrational Spectroscopy

588 Views

article

13.11 : IR Frequency Region: Fingerprint Region

Molecular Vibrational Spectroscopy

596 Views

article

13.12 : IR Spectrum Peak Intensity: Amount of IR-Active Bonds

Molecular Vibrational Spectroscopy

541 Views

article

13.14 : IR Spectrum Peak Broadening: Hydrogen Bonding

Molecular Vibrational Spectroscopy

687 Views

article

13.15 : IR Spectrum Peak Splitting: Symmetric vs Asymmetric Vibrations

Molecular Vibrational Spectroscopy

765 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。