登录

Thermodynamic potentials are state functions that are extremely useful in analyzing a thermodynamic system. They have dimensions of energy. The four important thermodynamic potentials are internal energy, enthalpy, Helmholtz free energy, and Gibbs free energy. These thermodynamic potentials can be expressed using two of the following variables: pressure, volume, temperature, and entropy. These two variables are expressed as the rate of change of the thermodynamic potential with respect to other two variables.

Internal energy is based on the contributions of molecules' potential and kinetic energy within a system. It is a function of entropy and volume. Therefore, the other two variables, i.e., temperature and pressure, can be expressed as the partial differential of internal energy at constant volume and entropy, respectively.

Enthalpy refers to the heat content of a system and is a function of entropy and pressure. If entropy and pressure are constant, the change in enthalpy is equal to the heat transferred to the system. For the reversible isobaric process, enthalpy represents the heat absorbed by the system. Expressions of temperature and volume can be obtained from the partial derivative of enthalpy with respect to entropy and pressure, respectively.

Helmholtz free energy measures the "useful" work obtained from a closed thermodynamic system at a constant temperature and volume. The system does work on its surroundings until its Helmholtz free energy reaches a minimum. Entropy and pressure can be expressed as the partial derivative of Helmholtz free energy with respect to temperature and pressure, respectively.

Gibbs free energy is used in problems where pressure and temperature are the important variables. It measures the maximum work done in a thermodynamic system when the temperature and pressure are constant. The expressions of entropy and volume can be obtained through partial differentiation of Gibbs free energy with respect to temperature and pressure, respectively.

Tags

Thermodynamic PotentialsInternal EnergyEnthalpyHelmholtz Free EnergyGibbs Free EnergyState FunctionsEnergy DimensionsEntropyVolumeTemperaturePressureClosed SystemUseful WorkReversible Isobaric ProcessPartial Derivatives

来自章节 20:

article

Now Playing

20.17 : Thermodynamic Potentials

The First Law of Thermodynamics

724 Views

article

20.1 : 热力学系统

The First Law of Thermodynamics

4.7K Views

article

20.2 : 在体积更改期间完成的工作

The First Law of Thermodynamics

3.6K Views

article

20.3 : 热力学状态之间的路径

The First Law of Thermodynamics

2.8K Views

article

20.4 : 热和自由膨胀

The First Law of Thermodynamics

1.5K Views

article

20.5 : 内能

The First Law of Thermodynamics

4.1K Views

article

20.6 : 热力学第一定律

The First Law of Thermodynamics

3.8K Views

article

20.7 : 热力学第一定律:解决问题

The First Law of Thermodynamics

2.2K Views

article

20.8 : 循环进程和孤立系统

The First Law of Thermodynamics

2.7K Views

article

20.9 : 等温过程

The First Law of Thermodynamics

3.4K Views

article

20.10 : 等压和等压过程

The First Law of Thermodynamics

3.1K Views

article

20.11 : 理想气体的热容 I

The First Law of Thermodynamics

2.5K Views

article

20.12 : 理想气体的热容 II

The First Law of Thermodynamics

2.3K Views

article

20.13 : 理想气体的热容 III

The First Law of Thermodynamics

2.1K Views

article

20.14 : 理想气体的绝热过程

The First Law of Thermodynamics

3.0K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。