Войдите в систему

Thermodynamic potentials are state functions that are extremely useful in analyzing a thermodynamic system. They have dimensions of energy. The four important thermodynamic potentials are internal energy, enthalpy, Helmholtz free energy, and Gibbs free energy. These thermodynamic potentials can be expressed using two of the following variables: pressure, volume, temperature, and entropy. These two variables are expressed as the rate of change of the thermodynamic potential with respect to other two variables.

Internal energy is based on the contributions of molecules' potential and kinetic energy within a system. It is a function of entropy and volume. Therefore, the other two variables, i.e., temperature and pressure, can be expressed as the partial differential of internal energy at constant volume and entropy, respectively.

Enthalpy refers to the heat content of a system and is a function of entropy and pressure. If entropy and pressure are constant, the change in enthalpy is equal to the heat transferred to the system. For the reversible isobaric process, enthalpy represents the heat absorbed by the system. Expressions of temperature and volume can be obtained from the partial derivative of enthalpy with respect to entropy and pressure, respectively.

Helmholtz free energy measures the "useful" work obtained from a closed thermodynamic system at a constant temperature and volume. The system does work on its surroundings until its Helmholtz free energy reaches a minimum. Entropy and pressure can be expressed as the partial derivative of Helmholtz free energy with respect to temperature and pressure, respectively.

Gibbs free energy is used in problems where pressure and temperature are the important variables. It measures the maximum work done in a thermodynamic system when the temperature and pressure are constant. The expressions of entropy and volume can be obtained through partial differentiation of Gibbs free energy with respect to temperature and pressure, respectively.

Теги

Thermodynamic PotentialsInternal EnergyEnthalpyHelmholtz Free EnergyGibbs Free EnergyState FunctionsEnergy DimensionsEntropyVolumeTemperaturePressureClosed SystemUseful WorkReversible Isobaric ProcessPartial Derivatives

Из главы 20:

article

Now Playing

20.17 : Thermodynamic Potentials

The First Law of Thermodynamics

724 Просмотры

article

20.1 : Термодинамические системы

The First Law of Thermodynamics

4.7K Просмотры

article

20.2 : Работа, выполненная при изменении объема

The First Law of Thermodynamics

3.6K Просмотры

article

20.3 : Путь между состояниями термодинамики

The First Law of Thermodynamics

2.8K Просмотры

article

20.4 : Тепло и свободное расширение

The First Law of Thermodynamics

1.5K Просмотры

article

20.5 : Внутренняя энергия

The First Law of Thermodynamics

4.1K Просмотры

article

20.6 : Первый закон термодинамики

The First Law of Thermodynamics

3.8K Просмотры

article

20.7 : Первый закон термодинамики: решение проблем

The First Law of Thermodynamics

2.2K Просмотры

article

20.8 : Циклические процессы и изолированные системы

The First Law of Thermodynamics

2.7K Просмотры

article

20.9 : Изотермические процессы

The First Law of Thermodynamics

3.4K Просмотры

article

20.10 : Изохорные и изобарические процессы

The First Law of Thermodynamics

3.1K Просмотры

article

20.11 : Теплоемкость идеального газа I

The First Law of Thermodynamics

2.5K Просмотры

article

20.12 : Теплоемкость идеального газа II

The First Law of Thermodynamics

2.3K Просмотры

article

20.13 : Теплоемкость идеального газа III

The First Law of Thermodynamics

2.1K Просмотры

article

20.14 : Адиабатические процессы для идеального газа

The First Law of Thermodynamics

3.0K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены