登录

A parallel-plate capacitor with capacitance C, whose plates have area A and separation distance d, is connected to a resistor R and a battery of voltage V. The current starts to flow at t = 0. What is the displacement current between the capacitor plates at time t? From the properties of the capacitor, what is the corresponding real current?

To solve the problem, we can use the equations from the analysis of an RC circuit and Maxwell's version of Ampère's law.

For the first part of the problem, the voltage between the plates at time t is given by

Equation1

Suppose that the z-axis points from the positive plate to the negative plate. In this case, the z-component of the electric field between the plates as a function of time t is given by

Equation2

Therefore, the z-component of the displacement current Idbetween the plates of the capacitor can be evaluated as

Equation3

where the capacitance Equation 4is being used.

Further, to solve the second part of the above-stated problem, the current into the capacitor after the circuit is closed can be obtained by the charge on the capacitor, which in turn can be evaluated by using the expression for VC. As a result, the real current into the capacitor is found to be the same as the displacement current.

Tags
Ampere Maxwell s LawParallel plate CapacitorCapacitanceDisplacement CurrentElectric FieldRC CircuitVoltageReal CurrentCharge On The CapacitorTime T

来自章节 30:

article

Now Playing

30.14 : Ampere-Maxwell's Law: Problem-Solving

Electromagnetic Induction

438 Views

article

30.1 : 感应

Electromagnetic Induction

3.7K Views

article

30.2 : 法拉第定律

Electromagnetic Induction

3.7K Views

article

30.3 : 楞次定律

Electromagnetic Induction

3.3K Views

article

30.4 : 运动电动势

Electromagnetic Induction

3.0K Views

article

30.5 : 法拉第磁盘 Dynamo

Electromagnetic Induction

1.9K Views

article

30.6 : 感应电场

Electromagnetic Induction

3.4K Views

article

30.7 : 感应电场:应用

Electromagnetic Induction

1.4K Views

article

30.8 : 涡流

Electromagnetic Induction

1.4K Views

article

30.9 : 位移电流

Electromagnetic Induction

2.7K Views

article

30.10 : 位移电流的意义

Electromagnetic Induction

4.2K Views

article

30.11 : 电磁场

Electromagnetic Induction

2.0K Views

article

30.12 : 麦克斯韦电磁方程

Electromagnetic Induction

2.9K Views

article

30.13 : 麦克斯韦方程组中的对称性

Electromagnetic Induction

3.1K Views

article

30.15 : 麦克斯韦方程组的微分形式

Electromagnetic Induction

339 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。