S'identifier

A parallel-plate capacitor with capacitance C, whose plates have area A and separation distance d, is connected to a resistor R and a battery of voltage V. The current starts to flow at t = 0. What is the displacement current between the capacitor plates at time t? From the properties of the capacitor, what is the corresponding real current?

To solve the problem, we can use the equations from the analysis of an RC circuit and Maxwell's version of Ampère's law.

For the first part of the problem, the voltage between the plates at time t is given by

Equation1

Suppose that the z-axis points from the positive plate to the negative plate. In this case, the z-component of the electric field between the plates as a function of time t is given by

Equation2

Therefore, the z-component of the displacement current Idbetween the plates of the capacitor can be evaluated as

Equation3

where the capacitance Equation 4is being used.

Further, to solve the second part of the above-stated problem, the current into the capacitor after the circuit is closed can be obtained by the charge on the capacitor, which in turn can be evaluated by using the expression for VC. As a result, the real current into the capacitor is found to be the same as the displacement current.

Tags
Ampere Maxwell s LawParallel plate CapacitorCapacitanceDisplacement CurrentElectric FieldRC CircuitVoltageReal CurrentCharge On The CapacitorTime T

Du chapitre 30:

article

Now Playing

30.14 : Ampere-Maxwell's Law: Problem-Solving

Electromagnetic Induction

438 Vues

article

30.1 : Induction

Electromagnetic Induction

3.7K Vues

article

30.2 : Loi de Faraday

Electromagnetic Induction

3.7K Vues

article

30.3 : Loi de Lenz

Electromagnetic Induction

3.3K Vues

article

30.4 : F.Emf mobile

Electromagnetic Induction

3.0K Vues

article

30.5 : Dynamo de disque Faraday

Electromagnetic Induction

1.9K Vues

article

30.6 : Champs électriques induits

Electromagnetic Induction

3.4K Vues

article

30.7 : Champs électriques induits : applications

Electromagnetic Induction

1.4K Vues

article

30.8 : Courants de Foucault

Electromagnetic Induction

1.4K Vues

article

30.9 : Courant de déplacement

Electromagnetic Induction

2.7K Vues

article

30.10 : Importance du courant de déplacement

Electromagnetic Induction

4.2K Vues

article

30.11 : Champs électromagnétiques

Electromagnetic Induction

2.0K Vues

article

30.12 : Équation de Maxwell de l’électromagnétisme

Electromagnetic Induction

2.9K Vues

article

30.13 : Symétrie dans les équations de Maxwell

Electromagnetic Induction

3.1K Vues

article

30.15 : Forme différentielle des équations de Maxwell

Electromagnetic Induction

339 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.