登录

James Clerk Maxwell (1831–1879) was one of the significant contributors to physics in the nineteenth century. He is probably best known for having combined existing knowledge of the laws of electricity and the laws of magnetism with his insights to form a complete overarching electromagnetic theory, represented by Maxwell's equations. The four basic laws of electricity and magnetism were discovered experimentally through the work of physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of Ampère's law as their cause. Maxwell's equations and the Lorentz force law encompass all the laws of electricity and magnetism.

The integral forms of Maxwell's equations contain all the information about the interdependence of the field and source quantities over a given region in space. However, these equations do not permit one to study the interaction between the field vectors and their relationships with the source densities at individual points. Maxwell's equations in differential form can be derived by applying Maxwell's equations in the integral form to infinitesimal closed paths, surfaces, and volumes, such that the limit shrinks to points. The differential equations relate the spatial variations of the electric and magnetic field vectors at a given point to their temporal variations.

Furthermore, the differential form of Maxwell's equations also correlates the spatial variations of both fields to the charge and current densities at a given point. Grouping the terms of electric and magnetic fields on one side and the sources producing these fields on the other suggests that charges and currents produce all electromagnetic fields. Maxwell's equations show that charges produce electromagnetic fields, and the force laws state that fields affect the charges.

Tags
Maxwell s EquationsDifferential FormElectromagnetic TheoryElectricityMagnetismLorentz Force LawField VectorsSource DensitiesCharge DensitiesCurrent DensitiesSpatial VariationsTemporal VariationsPhysicistsOerstedCoulombGaussFaraday

来自章节 30:

article

Now Playing

30.15 : Differential Form of Maxwell's Equations

Electromagnetic Induction

339 Views

article

30.1 : 感应

Electromagnetic Induction

3.7K Views

article

30.2 : 法拉第定律

Electromagnetic Induction

3.7K Views

article

30.3 : 楞次定律

Electromagnetic Induction

3.3K Views

article

30.4 : 运动电动势

Electromagnetic Induction

3.0K Views

article

30.5 : 法拉第磁盘 Dynamo

Electromagnetic Induction

1.9K Views

article

30.6 : 感应电场

Electromagnetic Induction

3.4K Views

article

30.7 : 感应电场:应用

Electromagnetic Induction

1.4K Views

article

30.8 : 涡流

Electromagnetic Induction

1.4K Views

article

30.9 : 位移电流

Electromagnetic Induction

2.7K Views

article

30.10 : 位移电流的意义

Electromagnetic Induction

4.2K Views

article

30.11 : 电磁场

Electromagnetic Induction

2.0K Views

article

30.12 : 麦克斯韦电磁方程

Electromagnetic Induction

2.9K Views

article

30.13 : 麦克斯韦方程组中的对称性

Electromagnetic Induction

3.1K Views

article

30.14 : Ampere-Maxwell 定律:解决问题

Electromagnetic Induction

438 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。