Iniciar sesión

James Clerk Maxwell (1831–1879) was one of the significant contributors to physics in the nineteenth century. He is probably best known for having combined existing knowledge of the laws of electricity and the laws of magnetism with his insights to form a complete overarching electromagnetic theory, represented by Maxwell's equations. The four basic laws of electricity and magnetism were discovered experimentally through the work of physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of Ampère's law as their cause. Maxwell's equations and the Lorentz force law encompass all the laws of electricity and magnetism.

The integral forms of Maxwell's equations contain all the information about the interdependence of the field and source quantities over a given region in space. However, these equations do not permit one to study the interaction between the field vectors and their relationships with the source densities at individual points. Maxwell's equations in differential form can be derived by applying Maxwell's equations in the integral form to infinitesimal closed paths, surfaces, and volumes, such that the limit shrinks to points. The differential equations relate the spatial variations of the electric and magnetic field vectors at a given point to their temporal variations.

Furthermore, the differential form of Maxwell's equations also correlates the spatial variations of both fields to the charge and current densities at a given point. Grouping the terms of electric and magnetic fields on one side and the sources producing these fields on the other suggests that charges and currents produce all electromagnetic fields. Maxwell's equations show that charges produce electromagnetic fields, and the force laws state that fields affect the charges.

Tags
Maxwell s EquationsDifferential FormElectromagnetic TheoryElectricityMagnetismLorentz Force LawField VectorsSource DensitiesCharge DensitiesCurrent DensitiesSpatial VariationsTemporal VariationsPhysicistsOerstedCoulombGaussFaraday

Del capítulo 30:

article

Now Playing

30.15 : Differential Form of Maxwell's Equations

Electromagnetic Induction

339 Vistas

article

30.1 : Inducción

Electromagnetic Induction

3.7K Vistas

article

30.2 : Ley de Faraday

Electromagnetic Induction

3.7K Vistas

article

30.3 : Ley de Lenz

Electromagnetic Induction

3.3K Vistas

article

30.4 : Campos electromagnéticos de movimiento

Electromagnetic Induction

3.0K Vistas

article

30.5 : Dínamo de disco de Faraday

Electromagnetic Induction

1.9K Vistas

article

30.6 : Campos eléctricos inducidos

Electromagnetic Induction

3.4K Vistas

article

30.7 : Campos eléctricos inducidos: aplicaciones

Electromagnetic Induction

1.4K Vistas

article

30.8 : Corrientes de Foucault

Electromagnetic Induction

1.4K Vistas

article

30.9 : Corriente de desplazamiento

Electromagnetic Induction

2.7K Vistas

article

30.10 : Importancia de la corriente de desplazamiento

Electromagnetic Induction

4.2K Vistas

article

30.11 : Campos electromagnéticos

Electromagnetic Induction

2.0K Vistas

article

30.12 : La ecuación de Maxwell del electromagnetismo

Electromagnetic Induction

2.9K Vistas

article

30.13 : Simetría en las ecuaciones de Maxwell

Electromagnetic Induction

3.1K Vistas

article

30.14 : Ley de Ampere-Maxwell: Resolución de problemas

Electromagnetic Induction

438 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados