JoVE Logo

登录

16.1 : Moments and Product of Inertia

The calculation of the moment of inertia for a differential element within a rigid body involves multiplying the element's mass by the square of the minimum distance from any one of the three-coordinate axes to the said element. This is a process that can be extended to cover the entire mass of the body by simply integrating the expression, thereby ascertaining the body's moment of inertia.

Equation 1

The same process can be applied to determine the moment of inertia in relation to the other two axes. It is important to note that the moment of inertia is invariably a positive quantity.

Furthermore, there is also a product of inertia related to a differential element and a pair of perpendicular planes. This is defined as the multiplication of the element's mass by the perpendicular distance from the plane to the element. By integrating this across the body's entire mass, one can calculate the body's product of inertia.

Equation 2

A similar analysis can be done for the remaining two planes. Unlike the moment of inertia, the product of inertia can either be positive, negative, or zero.

For bodies where the mass distribution is symmetric about one or both orthogonal planes, the product of inertia about such planes will always be zero. This symmetry plays a crucial role in determining the product of inertia. Overall, these calculations provide insights into the dynamic properties of a rigid body, underlining the importance of understanding the concepts of moment of inertia and product of inertia.

Tags

Moment Of InertiaProduct Of InertiaRigid BodyDifferential ElementMass DistributionCoordinate AxesIntegrationPositive QuantityPerpendicular PlanesMass CalculationDynamic PropertiesSymmetry

来自章节 16:

article

Now Playing

16.1 : Moments and Product of Inertia

3-Dimensional Kinetics of a Rigid Body

386 Views

article

16.2 : Inertia Tensor

3-Dimensional Kinetics of a Rigid Body

321 Views

article

16.3 : Moment of Inertia about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

245 Views

article

16.4 : Angular Momentum about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

179 Views

article

16.5 : Angular Momentum and Principle Axes of Inertia

3-Dimensional Kinetics of a Rigid Body

185 Views

article

16.6 : Principle of Impulse and Moment

3-Dimensional Kinetics of a Rigid Body

179 Views

article

16.7 : Kinetic Energy for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

196 Views

article

16.8 : Equation of Motion for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

248 Views

article

16.9 : Euler Equations of Motion

3-Dimensional Kinetics of a Rigid Body

195 Views

article

16.10 : Torque Free Motion

3-Dimensional Kinetics of a Rigid Body

444 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。