The calculation of the moment of inertia for a differential element within a rigid body involves multiplying the element's mass by the square of the minimum distance from any one of the three-coordinate axes to the said element. This is a process that can be extended to cover the entire mass of the body by simply integrating the expression, thereby ascertaining the body's moment of inertia.

Equation 1

The same process can be applied to determine the moment of inertia in relation to the other two axes. It is important to note that the moment of inertia is invariably a positive quantity.

Furthermore, there is also a product of inertia related to a differential element and a pair of perpendicular planes. This is defined as the multiplication of the element's mass by the perpendicular distance from the plane to the element. By integrating this across the body's entire mass, one can calculate the body's product of inertia.

Equation 2

A similar analysis can be done for the remaining two planes. Unlike the moment of inertia, the product of inertia can either be positive, negative, or zero.

For bodies where the mass distribution is symmetric about one or both orthogonal planes, the product of inertia about such planes will always be zero. This symmetry plays a crucial role in determining the product of inertia. Overall, these calculations provide insights into the dynamic properties of a rigid body, underlining the importance of understanding the concepts of moment of inertia and product of inertia.

Tags
Moment Of InertiaProduct Of InertiaRigid BodyDifferential ElementMass DistributionCoordinate AxesIntegrationPositive QuantityPerpendicular PlanesMass CalculationDynamic PropertiesSymmetry

Dal capitolo 16:

article

Now Playing

16.1 : Moments and Product of Inertia

3-Dimensional Kinetics of a Rigid Body

301 Visualizzazioni

article

16.2 : Inertia Tensor

3-Dimensional Kinetics of a Rigid Body

195 Visualizzazioni

article

16.3 : Moment of Inertia about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

180 Visualizzazioni

article

16.4 : Angular Momentum about an Arbitrary Axis

3-Dimensional Kinetics of a Rigid Body

123 Visualizzazioni

article

16.5 : Angular Momentum and Principle Axes of Inertia

3-Dimensional Kinetics of a Rigid Body

132 Visualizzazioni

article

16.6 : Principle of Impulse and Moment

3-Dimensional Kinetics of a Rigid Body

104 Visualizzazioni

article

16.7 : Kinetic Energy for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

140 Visualizzazioni

article

16.8 : Equation of Motion for a Rigid Body

3-Dimensional Kinetics of a Rigid Body

178 Visualizzazioni

article

16.9 : Euler Equations of Motion

3-Dimensional Kinetics of a Rigid Body

141 Visualizzazioni

article

16.10 : Torque Free Motion

3-Dimensional Kinetics of a Rigid Body

365 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati