JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 研究方案
  • 讨论
  • 披露声明
  • 材料
  • 参考文献
  • 转载和许可

摘要

在实体肿瘤间质流体流动升高,可以调节肿瘤细胞的侵袭。在这里,我们描述了技术应用嵌入在一个矩阵的细胞间质流体流动,然后测量其细胞浸润的影响。这种技术可以很容易地适应学习其他系统。

摘要

大多数实体肿瘤的生长和发展依赖于初始变换的癌细胞,他们的反应基质的相关信号在肿瘤微环境1。此前,在肿瘤微环境的研究主要集中在肿瘤基质的相互作用1-2。然而,肿瘤微环境,还包括各种生物物理力量,其影响仍然知之甚少。这些部队是肿瘤生长的生物力学的后果,导致基因表达的变化,细胞分裂,分化和入侵3。矩阵密度4,5-6,刚度和结构6-7,组织间液压力8,8间质流体流动都改变在癌症的发展。

在肿瘤间质流体流动特别是高于正常组织8-10。估计间质液FLOW速度进行了测量,发现是在0.1-3微米S -1的范围内,根据肿瘤大小和分化9,11。这是由于肿瘤诱导的血管生成和血管通透性增加12所造成的升高间质流体压力。间质流体流动已被证明能增加入侵的癌细胞13-14血管成纤维细胞和平滑肌细胞15。这次入侵可能是由于自体细胞趋化细胞周围建立3 - D 16的梯度或增加15基质金属蛋白酶(MMP)的表达,分泌趋化因子和细胞粘附分子表达17。然而,细胞感受到流体流动的机制,不能很好地理解。此外,改变肿瘤细胞的行为,间质流体流动的调节其他细胞在肿瘤微环境的活动。它与(一)驾驶的成纤维细胞分化成肿瘤促进myofibr州18,(B)抗原的搬运和其他可溶性因子,淋巴结肿大19,(三)调节淋巴管内皮细胞形态20。

这里介绍的技术对体外细胞间质流体流动和量化入侵( 图1)的影响。这种方法已经公布在基质和癌细胞侵袭13日至15日,17多个研究测量流体流量的影响。通过改变基质组成,细胞类型和细胞浓度,此方法可以适用于其他疾病和生理系统的研究侵袭,分化,增殖,基因表达,如细胞过程间流动的影响。

研究方案

1。含量的设置

  1. 冰在4°C(约2小时),解冻的基底膜小等分(<500μL)。
  2. 准备凝胶配方(看到表中的例子卷以下):10倍PBS(总体积的1倍),1N钠氢(相当于0.023补充胶原蛋白的量,或每的胶原蛋白制造商的建议,如适用),基底膜和胶原键入我来终浓度为1毫克/毫升和1.3毫克/毫升(可用于其他基质配方,根据细胞类型和实验)。

例如凝胶配方

组件 股权集中度 终浓度 添加量
10X PBS 10X 1X 0.090毫升
无菌水 0.346毫升
1N氢氧化钠 0.008毫升
基底膜 9.90毫克/毫升 1毫克/毫升 0.101毫升
鼠尾I型胶原 3.66毫克/毫升 1.3毫克/毫升 0.355毫升
  1. 上述孵育1小时的最终解决方案在同一顺序的混合冰凝胶的组成部分,在4°C根据我们的经验,1小时的孵化前更均匀的胶原凝胶细胞种植结果。确保在任何时候都保持冰基底膜和胶原工作,尽可能快,以防止凝胶。
  2. 地方12毫米直径8微米孔细胞成12井板,用消毒镊子文化插入。
  3. 在无血清培养基,在5×10 6细胞/ ml(凝胶溶液总体积应该是10%),计数细胞,重悬。
  4. 加入100μL细胞苏spension凝胶溶液900μL(最终细胞浓度5×10 5细胞/ ml),调匀移液器轻轻上下。
  5. 最后的混合物中加入150μL,每个插入和30分钟到37℃,5% 二氧化碳培养箱,直到凝胶聚合。
  6. 使用无血清培养基,
  • 加入100μL插入静止状态下的凝胶和1200μL上。内插入和良好的外部流体的水平应该大致相等,从而导致整个凝胶,无间隙流的最小压差。
  • 插入和650μL上述凝胶的水流条件下,加入100μL。要小心,以避免任何气泡下方的插入,因为他们将阻止细胞通过膜在这些地方迁移。这些卷所产生的压力差约1.3厘米高2 O(或1毫米汞柱)。
  1. 现浇板在37℃,5%CO2培养箱24小时。

2。细胞染色和计数

  1. 加入500μL的1X PBS,每到新的24孔板,这将被用来洗插入。
  2. 取出介质留在的流动transwells的上部和确定音量。从最初的增加,650μL(这将用于流量计算,见下文)总量减去剩余量计算总的洗脱体积。用棉签从插入凝胶和擦拭膜的顶面,以消除非侵入细胞。 24 15秒以及含有1X PBS洗插入板放入插入。
  3. 除去PBS和添加500μl4%多聚甲醛(PFA)的下孵育30分钟室温,修复transmigrated的细胞和每个插入的。
  4. 删除的煤灰,用500μl1×PBS冲洗一次,以去除残留的固定液。
  5. 加入500μLØf 0.5%的Triton X-100的解决方案下的插入和室温孵育10分钟通透细胞。
  6. 切膜插入到2微克/毫升的DAPI 1X PBS溶液中加入100μl使用刀片和地方,小心地将膜朝下的底面(transmigrated细胞朝下)。
  7. 保鲜膜板在铝箔上在室温为30分钟150转的振动筛的地方。
  8. 在500μL1X PBS(重复3次,每次10分钟),以消除自由的DAPI对振动筛洗膜。
  9. 广场膜transmigrated细胞朝上玻片上,加安装的解决方案和盖玻片。

3。数据分析

  1. 依靠5随机选择每个膜的位置(远离边缘和使用10X或20X物镜)DAPI染色细胞核。
  2. 使用下列公式计算平均细胞计数,并取得百分之入侵:
    入侵百分比= 100%×(平均细胞计数x膜面积)/(X号的显微图像细胞种子表面面积)
    %的入侵可以归到一些控制条件(通常是静态的条件)允许独立的实验之间的比较。
  3. 计算平均流速:孵化时间(如24小时),总分为洗脱体积流量条件。
  4. 计算平均流速:凝胶/膜(在这种情况下,60毫米2)截面积除以平均流速。

4。代表结果

以质流量下测量肿瘤细胞的侵袭,我们执行我们的3-D流使用的MDA-MB-435S转移性黑色素瘤细胞侵袭实验。先前已被证明这些细胞侵入间质流体流动13-14。细胞包埋在1.3毫克/毫升大鼠大组成的矩阵升肌腱I型胶原和1毫克/毫升基底膜基底膜矩阵,最终细胞浓度在5×10 5细胞/毫升。两个不同的条件进行了比较:(1)= 0.1微米s-1和(2)静止状态=没有可测量的流量平均间隙流( 图1)。

24小时后,用DAPI染色的膜,毛孔侵入细胞,通过促 ​​进细胞计数。 图2显示了一个入侵细胞的形象代表。根据明,只有膜孔是可见的。使用荧光,细胞核DAPI染色细胞计数和鬼笔环肽染色F-肌动蛋白的结构,用于可视化的细胞体(可选)。使用学生的t检验假设方差相等时,我们发现,间质性流量显着增加的MDA-MB-435S细胞浸润,由静态条件下的2.3倍(P = 0.003)( 图3)。这corrobora工商业污水附加费类似的结果(但不同基质条件,因此流速),使用这种细胞线13-14。

figure-protocol-3036
图1。的3-D间质流体流动的入侵检测的原理图。首先准备凝胶溶液使用适当的浓度和体积。再加入细胞凝胶溶液,并转移到细胞培养插入。最后加入适当体积的媒体每个条件和孵化。间质流体流动是由流体压头。

figure-protocol-3242
图2。Transmigrated膜的MDA-MB-435S细胞。入侵细胞被固定后,间质流体流动的入侵检测和染色DAPI和的Alexa Fluor 488标记的鬼笔,以方便侵入细胞的计数;图片的亮场下膜),B)的DAPI STA独立非执行董事的细胞核(蓝色),C)的Alexa Fluor 488-鬼笔环肽染色的F-肌动蛋白(绿色)。比例尺代表50微米。

figure-protocol-3529
图3。增加流量下的MDA-MB-435S细胞的入侵。 24小时后的细胞入侵质流(P = 0.003)显着提高。结果正常化平均静态条件下的值代表平均值±SEM 6细胞培养插入。

Access restricted. Please log in or start a trial to view this content.

讨论

在这里,我们所描述的量化对肿瘤细胞浸润间流动的影响,使用一个3-D矩阵嵌入细胞内的细胞培养插入方法。这和其他类似的方法已被用来研究多种细胞类型,13日至15日,17间流动的影响。我们的做法,部分模仿使用类型的肿瘤基质微环境,我胶原和基底膜含有蛋白质发现在基底膜上皮组织和周围基质21-22。这个系统是相对容易的设置了,简单,更具成本比大多数微流体装置,用?...

Access restricted. Please log in or start a trial to view this content.

披露声明

没有利益冲突的声明。

材料

NameCompanyCatalog NumberComments
试剂名称 公司 目录编号 评论
胶原蛋白(鼠尾) 屋宇署 354236 保持无菌
Millicell小细胞培养插入 Millipore公司 PI8P01250 8微米孔径,聚碳酸酯膜
基底膜屋宇署 354234 保持无菌
PBS Sigma Aldrich公司 100M-8202 10倍的准备凝胶溶液,1个洗涤步骤
氢氧化钠,1.0N解决方案 Sigma Aldrich公司 S2770 保持无菌
DMEM培养液1X CellGro 10-013-CV 保持无菌
胎牛血清亚特兰大生物 511150 保持无菌
青霉素链霉素 CellGro 30002CI 保持无菌
的Triton X-100 Sigma Aldrich公司 X100-500毫升在PBS的0.5%
多聚甲醛 Fisher Scientific则 04042-500 4%的PBS
去离子水保持无菌
4',,6-diaminido-2-苯基吲哚(DAPI) MP的Biomedicals 0215757401 1毫克/毫升原液
安装解决方案 Thermo Scientific的 TA-030调频
胰蛋白酶EDTA CellGro 25-052-CI 保持无菌

参考文献

  1. Cichon, M. A. Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer. J. Mammary Gland. Biol. Neoplasia. 15, 389-3897 (2010).
  2. Proia, D. A., Kuperwasser, C. Stroma: tumor agonist or antagonist. Cell Cycle. 4, 1022-1025 (2005).
  3. Dvorak, H. F. Tumor microenvironment and progression. J .Surg. Oncol. 103, 468-474 (2011).
  4. Provenzano, P. P. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11(2008).
  5. Engler, A. J. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  6. Paszek, M. J. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8, 241-254 (2005).
  7. Levental, K. R. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139, 891-906 (2009).
  8. Butler, T. P., Grantham, F. H., Gullino, P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 35, 3084-3088 (1975).
  9. Dafni, H. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res. 62, 6731-6739 (2002).
  10. Chary, S. R., Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. U.S.A. 86, 5385-5389 (1989).
  11. Heldin, C. H. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer. 4, 806-813 (2004).
  12. Fukumura, D. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation. 17, 206-225 (2010).
  13. Shields, J. D. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 11, 526-538 (2007).
  14. Shieh, A. C. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71, 790-800 (2011).
  15. Shi, Z. D., Wang, H., Tarbell, J. M. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One. 6, e15956(2011).
  16. Fleury, M. E., Boardman, K. C., Swartz, M. A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J. 91, 113-121 (2006).
  17. Miteva, D. O. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920-931 (2010).
  18. Ng, C. P., Hinz, B., Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci. 118, 4731-4739 (2005).
  19. Kunder, C. A. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455-2467 (2009).
  20. Helm, C. L. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. U.S.A. 102, 15779-15784 (2005).
  21. McGuire, P. G., Seeds, N. W. The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells. J Cell Biochem. 40, 215-227 (1989).
  22. Kleinman, H. K. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 21, 6188-6193 (1982).
  23. Haessler, U. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr. Biol. (Camb). , (2011).
  24. Polacheck, W. J., Charest, J. L., Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 108, 11115-11120 (2011).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

65

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。