JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A two-dimensional gas chromatography-time-of-flight mass spectrometry method is described for characterization of the aqueous fraction of bio-crude produced from hydrothermal liquefaction of algae. This protocol can also be employed to analyze the aqueous fraction of liquid products from fast pyrolysis, catalytic fast pyrolysis, catalytic deoxygenation and hydro-treating.

摘要

加上时间飞行质谱二维气相色谱法是用于识别与在复杂的混合物定量化学成分的有力工具。它经常被用于分析汽油,喷气燃料,柴油,生物柴油和生物原油/生物油的有机部分。在大多数这些分析的,分离的第一维是非极性的,其次是极性的分离。生物原油和其他水样的生物燃料生产中的水部分已审查了类似的列组合。然而,样品制备技术,如衍生化,溶剂萃取,固相萃取是必要 分析前。在这项研究中,来自藻类的水热液化得到的水级分特征在于二维气相色谱加上时间飞行质谱不使用在第一维极性分离,随后前样品制备技术通过在第二非极性的分离。从这个分析二维曲线与来自更传统的柱结构中所得到的那些进行比较。从藻类生物粗的水性级分的定性表征结果进行了详细的讨论。使用极性分离后跟一个非极性分离为含水样品中的有机物的表征二维气相色谱加上时间飞行质谱的优点突出。

引言

为液体燃料,有限的化石燃料资源,化石燃料供应的不确定性,并在大气中的温室气体浓度的增加,需求的担忧平稳增长增加了全球意识再生资源1。太阳能(光伏,包括太阳能热),风能,水能,地热能和生物质能是主要的可再生能源,它可能替代化石所产生的能量2。在这些中,生物质是用于生产液体运输燃料和高价值化学品3的仅基于碳的可替代能源资源。生物质包括任何有机材料,如森林资源,农业残余物,藻类,油籽,城市固体废物,和富含碳的产业废弃物( 例如 ,从纸浆和造纸工业或食品加工)1。基于COM木质纤维和非木质原料:生物量分为两大类位置特性。木质纤维素生物质包括碳水化合物和木质素的,而非木质原料有蛋白质,碳水化合物和脂质/油4。木质纤维素原料,从陆生植物来源的,只能满足当前液体燃料(汽油,喷气燃料,柴油)需求的30%,如果持续培育和收获5,6。用于生产可再生液体燃料,因此,非木质水生微生物,如微藻和真菌,被认为是潜在的原料,以补充木质素纤维素资源。

微藻原料必须满足当前的液体运输燃料的需求7,8的潜力。藻类有许多优点:高面生产率8,在低质量的,微咸水或海水9和积累能量密度高的甘油三酯或烃7,8的能力中生长的能力。热液液化(HTL)是一个可行的和可扩展的共n版本的过程,利用自然与藻类或水生原料10,11相关的水。它是具有10-25兆帕其产生的液体产物,或生物原油,可升级到燃料调和油料的250-400℃,操作压力的工作温度的热化学处理。生物原油从藻类HTL产生具有区别的和容易分离有机和含水馏份。生物的粗的有机部分可以通过催化加氢处理过程11被有效地转换成一个炼油厂准备共混原料。生物的粗的水性馏分含有〜存在于藻类原料中的总碳的30%。虽然数以千计的化合物已在HTL水性流中被识别,主要的级分组成的低分子量含氧化合物(其中包括酸,醇,酮和醛类)由碳水化合物和脂质,和氮杂环(​​包括吡咯,吡啶的降解形成的,吡嗪ES,和咪唑)从蛋白质分解12而得。研究利用水相,以提高整体工艺的经济性以及可持续性正在进行中。合成气可从藻类生物原油经由催化热液气化10,13,14中的水相来制备。可替代地,在水级分的有机物也能催化转化为燃料添加剂和特殊化学品。研究在水性液相有机物转化优化催化气化热液和催化剂的筛选研究,目前是西北太平洋国家实验室(PNNL)正在进行中。对于这项工作,定性以及藻类生物粗的水性馏分定量表征是必需的。由于藻类生物粗的含水馏分被认为是废料流,也有已经分析的藻类生物粗13,15的含水馏分很少有研究。此外,最近的研究的结论是,这HTL藻类水转化成高价值的生物制品将改善的可持续性以及基于HTL-生物精炼厂11的经济性。因此,本研究集中于通过二维气相色谱加上时间飞行质谱(GC×GC-TOF-MS)开发用于从藻类HTL获得生物粗​​的水性馏分的定性表征的方法。

的GC×GC-TOF-MS是最有前途的色谱分析技术来提高(样品中或化学原料的分离)的分辨率,峰值容量( 分辨的峰的数目),信噪比(用于化学化合物的鉴定以高置信度),以及避免化学化合物16的共洗脱。为了最大限度地提高分辨率,峰值容量,和信号噪声比,具有不同固定相位的两个GC色谱柱使用压配合Ç串联onnector或微工会17( 见图1,它是GC×在本研究中使用的GC-TOF-MS系统的框图)。调制器位于压入配合连接器和辅助列之间陷阱,重新调整,和从主塔重新注入流出物进入第二塔18。 如图1上,在本研究中的次级柱调制发生。然后将该次级柱经由传输线组件连接到TOF-MS。

的GC×GC-TOF-MS以前用于定性以及有机样品的定量分析如原油16,19,汽油,喷气燃料,柴油,生物柴油和生物燃料的有机部分20-从热化学以及热催化转化产生22处理23,24。对于GC这些有机样品的表征×GC-TOF-MS仪器,长非极性色谱柱W¯¯作为用作第一列中,而短极性柱用作第二列。这种传统的列配置解析基于波动性在第一个维度的差异,其次是极性第二个维度18化合物。从生物过程,食品加工,以及环境的废物水性或水样品也使用类似的初级/次级柱配置,其特征后的样品已经通过制备步骤17,25-30。样品制备技术,如衍生化,固相萃取,和有机溶剂萃取已全部之前利用GC×GC-TOF-MS分析17,27-29,31,32。这些技术的目的是使用常规的柱结构33减少样品分析中的化合物的极性。另一种策略在基于样品的性质该研究中采用的(在水中这里极性有机化合物)利用反向初级/次级柱用于GC×GC-TOF-MS分析的配置。因为生物原油从HTL产生的水性级分具有极性化合物13,一个主极性柱和一个第二非极性柱的柱组合在GC×GC-TOF-MS用于无需任何上游样品制备。这个初级/次级柱组合解析基于在第一维中的极性差异的化合物,接着在第二维的波动。限于分析方法在文献中存在使用二维气相色谱无需事先检测体处理15含水样品的表征。

本研究的目的是确定存在于藻类生物粗的含水馏分中的化合物。为了实现这一目标,一个GC×GC-TOF-MS的数据采集方法与极性列的列组合(开发普里姆进制)×非极性(二次)。 Klenn 。 (2015)建议,相对于增加主柱(尤其60米GC柱)和降低次级柱的偏移温度的长度与主塔将最大化峰值容量和分辨率16-18。因此,60米的主塔和5℃偏移二次柱的温度相对于该主列在该研究中使用。确定最佳调制周期遵循本研究中所描述的协议(见第4节)。 GC柱温度的最适斜坡率通过试错法确定,并且类似于在文献16-18所建议的值。为了探讨水样此列组合的优势,我们分析HTL藻水样与非极性×极性常规列的组合。在文献中建议的操作参数被用于分析所述水藻类生物原油用非极性×极性柱组合18的级分。

Access restricted. Please log in or start a trial to view this content.

研究方案

1.样品制备

  1. 根据反应器的设计和实验步骤在文献10,11发现生成的混合的水/有机产物经由藻类的连续流HTL流。
  2. 使用重力分离器的产物流分离成水相和有机相。
  3. 过滤10毫升使用在维持在4℃的GC×GC-TOF-MS分析的冰箱的0.45微米注射器式滤器并储存在HTL水相。

2.仪器组件

  1. 使用配备有用于这些实验中的四喷射双台基于冷却调制器和时间飞行(TOF)质谱仪(MS)的气相色谱仪(GC)。
  2. 配置自动进样器注入1微升每个样品或标准到GC的。如文献13中所述使用样品和标准注射随机区组设计为自动取样序列。该randomi捷思块设计是在定量研究通常用于控制仪器的操作。我们的实验室采用了常规设计,即使在比较研究,以验证仪器操作。
  3. 调制器之前使用压紧连接器连接主次列。确保主要和次要列的两个边缘连接到压紧接头,再直减无锋利的棱角。
  4. 广场上的气相色谱柱套圈,然后主列连接到GC进样器,使5个mm色谱柱的是在喷射器内。
  5. 确保玻璃内胆,不粘内胆O形圈和隔为GC进样都是新的,无污染的。
  6. 使用1/16×0.5毫米内径传输线套圈连接次级柱和传输线。放置次级柱的0.2μm的部分中的传输线。
  7. 确保0.1μm的部分次级柱的是在调制器。
  8. 使用超高纯度氦气气体作为用于以1.5ml分钟-1的流速GC载气。
  9. 确保有在其充当在调制器的冷却剂的杜瓦足够液氮中。在杜瓦液氮的水平可以使用连接到其出口的压力计来预测。压力计的69千帕读数表明杜瓦是满的,而0千帕表示它是空的。

3.协议之前分析样品

  1. 确保有仪器没有大的泄漏。如果TOF-MS的真空计读数高于2.7×10 -5 Pa下1.5毫升分钟-1 GC色谱柱流速,这表明在该系统的一个主要的泄漏。
  2. 建立质量控制(QC)方法,并内置"采集系统调整"协议运行使用制造商的协议,以实现最大的信号响应。
  3. 运行内置的QC方法的"仪器优化"的协议,在系列 - filam耳鼻喉科重点,离子光学对焦并使用制造商的协议质量校准测试。确保质量校正测试通过。这种质量控制方法确保该仪器的所有硬件参数在最佳水平。
  4. 执行"泄漏检查"使用制造商的协议。分析自动生成泄漏检查报告。确保的相对浓度28(N 2),32(O 2)和18(水分)离子必须低于分别小于10%,3%和69离子内标质谱5%。
  5. 使用调谐TOF-MS制造商的协议。
  6. 运行质量控制方法以及TOF-MS调协议前,泄漏检查后,也同时分析样品和标准。

4.协议来确定调制器的最佳调制周期

  1. 任意选择长调制周期( 10秒或13秒)。在2.2中所述注入样本。
  2. 确定的滞留时间在等值线图之后,无峰洗脱的第二维。选择识别出的第二维保留时间为最佳调制周期。 图2清楚地阐明保留时间识别的等高线图的第二维。
  3. 增加在步骤4.1中使用的调制周期,并执行再次,如果"环绕"观察18分析。如果在第二维的峰值洗脱第一尺寸的基线下发生回绕现象。例如,对于"环绕"等高线图显示在补充信息如图3所示
  4. 直到最佳值确定重复步骤4.2和4.3。

5.仪器设置参数实验

  1. 安装一个极性(60米×0.25毫米×0.5微米膜厚度)毛细管柱作为主柱和非极性(2.3米×0.25毫米×0.5微米膜厚度)卡皮亚RY列作为次级柱。至少2小时烘烤主和次级柱以除去水分,空气和用新的GC柱相关的污染物的痕量。
  2. 以1.5ml分钟-1的流速使用超高纯度氦气作为载气进行GC。
  3. 在GC注射器设定为260℃的温度和1分流比:250。
  4. 使用用于主列下列温度程序:40℃持续0.2分钟的恒定温度,随后的升温至260℃以5℃分钟-1,随后的260℃的恒定温度下保持5分钟。
  5. 维持调制器温度5℃比次级柱中,在比该主塔的高5℃的次级柱温度高。
  6. 使用4秒的最佳调制周期以0.8秒的热脉冲的冷脉冲1.2秒。此值的基础上确定在节描述的协议离子4。
  7. 设置传输线温度至270℃。
  8. 设置采集延时或溶剂延迟0秒。
  9. 分别设置的较低和较高的范围为m / z为35和800。
  10. 设置在400谱/秒的质谱检测器采集速率。
  11. 在比最佳值150V时更高保持质谱仪的电压。
  12. 保持在225℃下的MS离子源温度。

6.数据分析

  1. 使用由仪器制造商提供的软件进行数据处理。
  2. 选择数据分析方法以下任务 - 计​​算基准,找到基线,库搜索以上的山峰和计算是/高度。
  3. 跟踪通过数据文件的基线。输入偏移基线0.5。
    输入在第一维15秒,在第二维0.15秒的预期峰宽。
  4. 用于鉴定的> 850设置信噪比为5000和相似度值化合物fication。
  5. 选择市售的质谱库,以确定样品中存在的化合物,并设置库搜索模式来转发。
  6. 处理使用使用制造商的协议此数据分析方法的数据文件。它至少需要1小时来处理的数据文件。

Access restricted. Please log in or start a trial to view this content.

结果

对于具有极性×非极性如图所示的柱组合分析的藻类生物粗含水馏分得到的总离子色谱图(TIC)4。保留时间和通过对一个国家搜索鉴定的化合物的相似性或匹配因子值标准与技术研究院(NIST)库研究所列于表1中 。含氧化合物(如cyclopenatanone,呋喃化合物和dianhydromannitol)和有机酸(包括乙酸,丙酸和丁酸)在HTL藻类水34进行?...

Access restricted. Please log in or start a trial to view this content.

讨论

结果清楚地说明极性×非极性的列组合,以解决目前在藻类生物原油,恕不另行样品制备技术的水相极性化合物和光挥发物的能力。观察到的有机酸和在使用非极性×极性柱组合N化合物急剧峰拖尾。这拖尾没有为早期洗脱光有机物观察。此行为已重现的检验仪器是无泄漏(在TOF-MS中的真空度为低于2.7×10 -5 Pa下为1.5ml分钟-1 GC载气流量)时。可以预计,如果有与压紧连接器,或者如?...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors declare that they have no competing financial interests.

致谢

这份手稿已根据合同号DE-AC05-76RL01830撰写由巴特尔纪念研究所与美国能源部门。美国政府保留和发布,通过接受的文章发表,承认美国政府保留了非排他性的,缴足,不可撤销的,全球性的许可发布或复制本手稿的出版形式,还是让别人做所以,对于美国政府的目的。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
GC × GC–TOF/MSLecoPEG4D11DLN15Commercial Pegasus 4D
ChromaTOF version 4.50 LecoData analysis software
Rxi-5MS GC columnRestek134202.3 m column was used from this column.
Stabilwax GC columnRestek10626
HP-5 GC columnAgilent19091J-416
Stabilwax GC columnRestek15121
Presstight ConnectorRestek20430
GC injector linerRestek23305.5
GC Injector ferrulesAgilent5181-3323
Non-stick liner O-ringsAgilent5188-5365
Transfer line ferrulesRestek20212
EthanolSigma-Aldrich459844Chromatography grade
AcetoneSigma-Aldrich414689Chromatography grade
Acetic acidSigma-Aldrich320099Chromatography grade
2-butanoneSigma-Aldrich360473Chromatography grade
Propanoic acidSigma-Aldrich402907Chromatography grade
Butanoic acidSigma-Aldrich19215Chromatography grade
PyridineSigma-Aldrich270970Chromatography grade
PyrazineSigma-Aldrich65693Chromatography grade
AcetamideSigma-Aldrich695122Chromatography grade
2,5-pyrrolididioneSigma-AldrichS9381Chromatography grade
N-methylsuccinimideSigma-Aldrich325384Chromatography grade
N-(2-hydroxyethyl)succinimideSigma-Aldrich444073Chromatography grade

参考文献

  1. Huber, G. W., Iborra, S., Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 106, 4044-4098 (2006).
  2. Mata, T. M., Martins, A. A., Caetano, N. S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14, 217-232 (2010).
  3. Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science. 330, 1222-1227 (2010).
  4. Maddi, B., Viamajala, S., Varanasi, S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour. Technol. 102, 11018-11026 (2011).
  5. Kim, S., Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 26, 361-375 (2004).
  6. von Blottnitz, H., Curran, M. A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 15, 607-619 (2007).
  7. Hu, Q., et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639 (2008).
  8. Georgianna, D. R., Mayfield, S. P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. 488, 329-335 (2012).
  9. Amaro, H. M., Guedes, A. C., Malcata, F. X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy. 88, 3402-3410 (2011).
  10. Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., Jones, S. B. Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour. Technol. 178, 147-156 (2015).
  11. Elliott, D. C., et al. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res. 2, 445-454 (2013).
  12. Sudasinghe, N., et al. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel. 119, 47-56 (2014).
  13. Panisko, E., Wietsma, T., Lemmon, T., Albrecht, K., Howe, D. Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks. Biomass Bioenergy. 74, 162-171 (2015).
  14. Onwudili, J. A., Lea-Langton, A. R., Ross, A. B., Williams, P. T. Catalytic hydrothermal gasification of algae for hydrogen production: Composition of reaction products and potential for nutrient recycling. Bioresour. Technol. 127, 72-80 (2013).
  15. Villadsen, S. R., et al. Development and Application of Chemical Analysis Methods for Investigation of Bio-Oils and Aqueous Phase from Hydrothermal Liquefaction of Biomass. Energy Fuels. 26, 6988-6998 (2012).
  16. Klee, M. S., Cochran, J., Merrick, M., Blumberg, L. M. Evaluation of conditions of comprehensive two-dimensional gas chromatography that yield a near-theoretical maximum in peak capacity gain. J. Chromatogr. A. 1383, 151-159 (2015).
  17. Seeley, J. V., Seeley, S. K. Multidimensional Gas Chromatography: Fundamental Advances and New Applications. Anal. Chem. 85, 557-578 (2013).
  18. Mostafa, A., Edwards, M., Gòrecki, T. Optimization aspects of comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1255, 38-55 (2012).
  19. Zhu, S., et al. A simple model for separation prediction of comprehensive two-dimensional gas chromatography and its applications in petroleum analysis. Anal. Methods. 6, 2608-2620 (2014).
  20. Almeida, T. M., et al. Preliminary Studies of Bio-oil from Fast Pyrolysis of Coconut Fibers. J. Agric. Food Chem. 61, 6812-6821 (2013).
  21. Rathsack, P., et al. Analysis of pyrolysis liquids from scrap tires using comprehensive gas chromatography-mass spectrometry and unsupervised learning. J. Anal. Appl. Pyrolysis. 109, 234-243 (2014).
  22. Tessarolo, N. S., et al. Assessing the chemical composition of bio-oils using FT-ICR mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Microchem. J. 117, 68-76 (2014).
  23. Djokic, M. R., Dijkmans, T., Yildiz, G., Prins, W., Van Geem, K. M. Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography. J. Chromatogr. A. 1257, 131-140 (2012).
  24. Vendeuvre, C., Ruiz-Guerrero, R., Bertoncini, F., Duval, L., Thiebaut, D. Comprehensive two-dimensional gas chromatography for detailed characterisation of petroleum products. Oil Gas Sci. Technol. 62, 43-55 (2007).
  25. Guo, Q., et al. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the screening of potent swampy/septic odor-causing compounds in two drinking water sources in China. Anal. Methods. 7, 2458-2468 (2015).
  26. Ma, H., et al. Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC [times] GC). Anal. Methods. 6, 6841-6849 (2014).
  27. Lamani, X., Horst, S., Zimmermann, T., Schmidt, T. Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GCxGC-qMS). Anal. and Bioanal. Chem. 407, 241-252 (2015).
  28. Skoczynska, E., Leonards, P., de Boer, J. Identification and quantification of methylated PAHs in sediment by two-dimensional gas chromatography/mass spectrometry. Anal. Methods. 5, 213-218 (2013).
  29. Tobiszewski, M., Bigus, P., Namiesnik, J. Determination of parent and methylated polycyclic aromatic hydrocarbons in water samples by dispersive liquid-liquid microextraction-two dimensional gas chromatography-time-of-flight mass spectrometry. Anal. Methods. 6, 6678-6687 (2014).
  30. Freitas, L. S., et al. Analysis of organic compounds of water-in-crude oil emulsions separated by microwave heating using comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. J. Chromatogr. A. 1216, 2860-2865 (2009).
  31. Gunatilake, S. R., Clark, T. L., Rodriguez, J. M., Mlsna, T. E. Determination of five estrogens in wastewater using a comprehensive two-dimensional gas chromatograph. Anal. Methods. 6, 5652-5658 (2014).
  32. Ljungkvist, G., Larstad, M., Mathiasson, L. Determination of low concentrations of benzene in urine using multi-dimensional gas chromatography. Analyst. 126, 41-45 (2001).
  33. Schummer, C., Delhomme, O., Appenzeller, B. M. R., Wennig, R., Millet, M. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta. 77, 1473-1482 (2009).
  34. Yang, H. P., Yan, R., Chen, H. P., Lee, D. H., Zheng, C. G. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86, 1781-1788 (2007).
  35. Du, Z., et al. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 102, 4890-4896 (2011).
  36. Scriven, E. F. V., Murugan, R. in Kirk-Othmer Encyclopedia of Chemical Technology. , John Wiley & Sons, Inc. (2000).
  37. Higashio, Y., Shoji, T. Heterocyclic compounds such as pyrrole, pyridines, pyrrolidine, piperidine, indole, imidazol and pyrazines. Appl. Catal. A: Gen. 260, 251-259 (2004).
  38. Ndaji, F. E., Thomas, K. M. The kinetics of coal solvent swelling using pyridine as solvent. Fuel. 72, 1525-1530 (1993).
  39. Fillon, H., Gosmini, C., Nédélec, J. -Y., Périchon, J. Electrosynthesis of functionalized organodizinc compounds from aromatic dihalides via a cobalt catalysis in acetonitrile/pyridine as solvent. Tetrahedron Lett. 42, 3843-3846 (2001).
  40. Silin, M. A., Ivanova, L. V., Burov, E. A., Koshelev, V. N., Bordubanova, E. G. Synthesis and testing of polyalkenyl succinimides as components of detergent additives for motor fuels. Pet. Chem. 52, 272-277 (2012).
  41. Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev. 64, 887-895 (2012).
  42. Bellina, F., Rossi, R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron. 62, 7213-7256 (2006).
  43. Snell, R. W., Shanks, B. H. CeMOx-Promoted Ketonization of Biomass-Derived Carboxylic Acids in the Condensed Phase. ACS Catal. 4, 512-518 (2014).
  44. Manzano, C., Hoh, E., Simonich, S. L. M. Improved Separation of Complex Polycyclic Aromatic Hydrocarbon Mixtures Using Novel Column Combinations in GC × GC/ToF-MS. Environ. Sci. Technol. 46, 7677-7684 (2012).
  45. van der Westhuizen, R., et al. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels. J. Chromatogr. A. 1218, 4478-4486 (2011).
  46. Omais, B., et al. Investigating comprehensive two-dimensional gas chromatography conditions to optimize the separation of oxygenated compounds in a direct coal liquefaction middle distillate. J. Chromatogr. A. 1218, 3233-3240 (2011).
  47. Wildschut, J., Mahfud, F. H., Venderbosch, R. H., Heeres, H. J. Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts. Ind. Eng. Chem. Res. 48, 10324-10334 (2009).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

109 GC GC

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。