JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本地化气味源的能力是必要的昆虫存活和预计适用于人工气味跟踪。昆虫控制机器人由一个实际silkmoth驱动,使我们可以通过一个机器人平台,以评估昆虫气味跟踪能力。

摘要

Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

引言

Autonomous robots capable of finding an odor source can be important for the safety and security of society. They can be used for the detection of disaster victims, of drugs or explosive materials at an airport, and of hazardous material spills or leaks in the environment. At present, we rely entirely on well-trained animals (e.g., dogs) for these tasks, and robotic odor source localization has been strongly expected to relieve the workload of these animals. Finding an odor source is a challenging task for robots because odorants are distributed intermittently in an atmosphere1; therefore, continuous sampling of the odor concentration gradient is not always possible. Thus, a search strategy using intermittent odor cues is necessary for the achievement of robotic odor source localization2-4.

Odor source localization is essential for organism survival and includes tasks such as finding food, mating partners, and sites for oviposition. To overcome the difficulty in tracking patchy distributed odorants, organisms have evolved various behavioral strategies consisting of two fundamental behaviors: moving upstream during odor reception and cross-stream during cessation of odor reception5,6. These reactive strategies have been well-documented in insects and further combined with other modalities, such as wind direction and vision5-8. The insect behavioral models have also been useful examples for robotics3,9-11, in which behavioral algorithms or neural circuit models are implemented into mobile robots for the evaluation of odor source localization abilities10,12-15. From biomimetic perspectives, this "bottom-up" approach is certainly a fundamental way to develop biomimetic robots. However, the bottom-up approach is not a shortcut to obtaining a useful search strategy, because biological analyses are still ongoing, and the modeling of the sensory-motor systems behind insect behaviors has not been completed. Therefore, it is still unknown how such a biological system actually works as a controller of a robotic platform.

In this article, we demonstrate the protocol of a straightforward "top-down" approach to develop an odor-tracking mobile robot controlled by a biological system16,17. The robot is controlled by a real insect and can be regarded as a prototype of future insect-mimetic robots. In the robot's cockpit, a tethered adult male silkmoth (Bombyx mori) walked on an air-supported ball in response to the female sex pheromone, which was delivered to each antenna through air suction tubes. The ball rotations caused by the walking of the onboard moth were measured by an optical sensor and were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can investigate how the insect sensory-motor system works on the robotic platform where a pilot insect is in a closed loop between the robot and a real odor circumstance. The manipulation of the robotic hardware alters the closed loop; therefore, the insect-controlled robot is a useful platform for both engineers and biologists. For engineering, the robot represents the first steps of applying a biological model to meet the requirements for robotic tasks. For biology, the robot is an experimental platform for studying sensory-motor control under a closed loop.

研究方案

1.实验动物

  1. 准备一个塑料盒,以保持公silkmoths的蛹( 桑蚕 ),直到他们的羽化。在底部放纸巾和纸板件周围的框( 图1A)的内壁。
    注:纸板的作品是必要的成蛾,同时羽化( 图1A)在扩大自己的翅膀举行。
  2. 在框中放入雄silkmoth( 家蚕铁道部 I)蛹,并让他们在一个孵化器,直到羽化16小时下:8小时光照:黑暗周期为25℃。
    注:雌雄蛹可以通过在腹部( 图1B)的标志性受到歧视。
  3. 收集成年雄蛾羽化后并将其移动到一个新的框。
  4. 保持成年蛾在培养箱16小时以下:8小时光照:黑暗周期和降低温度至15℃,实验前,以减少它们的活性。

2.拴系Silkmoth

  1. 附件制造的圈养( 图2A)
    注意:该附件包括在其前端的薄塑料片的带材的铜导线。这确保行走( 图2B)期间胸廓的背腹运动。
    1. 制备薄塑料片的带材,2×40毫米(厚度:0.1 MM),并在中间折叠。
    2. 折叠条附加到铜线用粘合剂的尖端。
    3. 弯,其中一个silkmoth的胸部附着在折叠条带的前端。
  2. 在光照期为实验用成蛾(2-8天)。
    注意:对信息素的敏感性强烈依赖于生物钟18。因为家蚕是一昼夜蛾,必须在光周期地进行实验。
  3. 轻轻卸下DOR所有尺度采用了一块湿纸巾(或棉签)的SAL胸部(胸背板),并暴露胸背板( 图2C)的角质层。
  4. 在塑料上附着的带和暴露胸背板有小的平口螺丝刀表面上粘贴粘合剂,等待5-10分钟直至粘合剂不再粘。
    注:粘合剂应不能触及机翼铰链或前翅tegulae( 图2C)。
  5. 粘接胸背板附件。
  6. 请把它放在机器人的驾驶舱内前拴的飞蛾。持在支架上附着并把一张纸下的双腿休息的飞蛾。

3.昆虫控制机器人

  1. 设计基于以前的作品16,17,19昆虫控制机器人的硬件。
    注意:昆虫控制机器人包括一个空气支撑的跑步机带的光学鼠标传感器capturE中的昆虫运动,定制基于AVR的微板用于处理和马达控制,和两个直流无刷电机( 图34)。机器人可以在200毫秒的时间延迟内用96%的精度或更高的球转动的基础上运行。它也保证期间信息素跟踪行为16的最大前进速度的silkmoth的流动性(24.8毫米/秒)和角速度(96.3°/秒)。跑步机( 图5A)和气味输送系统( 图5B)的气流被设计用于板载蛾顺利走在球和通过两个天线获得的气味。跑步机的进气口和流路是从那些气味输送系统分开,以避免信息素的污染。
  2. 设计基于以前的作品16板载微控制器的软件。
    注:板载微控制器计算Ť他从用光学传感器测量的昆虫移动机器人的运动(旋转,ΔX;平移,Δÿ; 图6)。行驶距离(ΔL)和打开每机器人的单位时间的角度(Δθ)的每个轮子(左,ΔL L;,ΔL R)的行进距离的基础上计算,如ΔL =(Δ L L +ΔL R)/ 2和Δθ=(ΔL L - ΔL R)/ D ,其中D 是两个轮(120 MM)之间的距离。 ΔL L,ΔL R中进一步描述为ΔL L x,L大号 Y,L,ΔL R x,R大号 Y,R,其中Δ x,L </子>,Δ x,R是车轮上的左,右两侧通过Δ 点¯x控制的移动距离,和Δ 大号 Y,L,Δ 大号 Y,R是那些由Δý控制。理想的情况下,Δ x,L和Δ x,R被描述为Δ x,L =-Δ x,R = 的X(D 车轮 / D ),和Δ 大号 Y,L,Δ 大号 ÿ中,R被描述为Δ 大号 Y,L大号 Y,R = GΔy,其中G是马达增益和D 的球是球(50毫米)的直径。在实践中,电动机增益独立地由每个侧(左或右轮)和每个方向(向前或向后旋转),以便校准所述机器人运动设置。独立涨势进一步允许不对称马达旋转,以产生所述机器人的转动偏置设置(见步骤6.1)。
  3. 与水以除去任何可能的嗅觉或视觉提示:;:洗白色发泡聚苯乙烯球的表面(50毫米质量直径约2克)。
    注意:一个新的球的表面应以细砂纸,如P400,这确保对球腿的把手进行粗化处理。
  4. 打开送风风扇,在9伏供应空气到跑步机和漂浮球( 图5A)。观察球从杯底上浮约2毫米。
  5. 使用螺钉,附加与蛾附件的铜丝(见步骤2),以在所述机器人的座舱夹具(参见图3插图)。确保中间腿的位置是在球( 图7A)的中心。
  6. 调整附件的垂直位置,以使蛾对将b正常走路所有。保持球在相同的高度之前和附加蛾( 图7B)之后。
    注意:该附件的太低位置增加对蛾压力和引发向后行走来抵抗压力( 图7C),而过高的位置会导致不稳定的步行和传感器的故障是由于在垂直位置的变化球( 图7D)。要检查正常行走的行为,单膨化信息素的刺激被用来触发走在蛾(为信息素的刺激,见第4步)。请注意,由于以前接触过bombykol habituates silkmoths并降低其灵敏度(松山和神崎,未公布数据)测试刺激必须是最小的。

4.气味源的制备

注:家蚕是对同种雌性性信息素的主要成分敏感(bombykol:(E,Z)-10,12-hexadecadien -1-醇) 20。实验设备与bombykol任何污染引起的气味追踪行为和影响蛾的响应。

  1. 在一张滤纸(约10mm×10mm)的的滴10微升溶解在正己烷(200毫微克/微升)的bombykol溶液。每一片滤纸bombykol的量为2000毫微克。
    注意:要检查蛾的正常行走的行为,在此步骤中准备一个信息素的刺激盒。盒是一个玻璃巴斯德吸管用含有2000纳克bombykol之一一张滤纸。推球的喷着空气含bombykol。

5.气味源定位实验

  1. 打开一个拉出空气型风洞(1800×900×300毫米,长×宽×高; 图8)的风扇并设置风速至0.7米/秒。确保该温度超过20℃。
  2. 设置臭味源(在p含bombykol风洞的上游滤纸)的IECE。
    注意:羽宽度应在实验前,通过使用氯化钛17,19来确认。
  3. 打开机器人的微控制器板和建立通过蓝牙到PC的串行连接。
  4. 发射被称为"生物信号",它提供了在PC和机器人之间的界面的定制的Java程序。
    注意:主窗口包括用于发送命令给机器人的按钮,用于显示输入和串行通信的输出,并且小箱配置参数文本窗口。随后的命令是通过点击相应的按钮,在这个程序中,除了视频捕捉发送。
  5. 点击"关于设备"按钮,以确认通过指定的COM口机器人发送命令连接,并检查该消息是由机器人返回。
  6. 点击"备忘录RY擦除"按钮,清除遗留在板载闪存先前的运动数据。
  7. 点击"drivemode1"按钮发送默认马达收益的机器人。
    注意:电机增益和昆虫运动和机器人的运动之间的时间延迟的操作应用此步骤之后(参见步骤6.1和6.3, 图9)。
  8. 点击"不开车"按钮发送一个命令,直到实验开始固定机器人。
  9. 把机器人在起始位置(从气味源600毫米下游),转动马达驱动板的开关。
  10. 按下摄像机的录制按钮开始视频拍摄。
  11. 点击"REC START"按钮,开始命令发送与板载闪存球旋转的同时记录来启动机器人。观察,该机器人开始移动并跟踪气味羽。
  12. 点击"停止录像"和"不开车"按钮发送命令,如果机器人本地化气味源同时停止机器人的运动和记录。
  13. 按下摄像机的录制按钮停止视频拍摄。
  14. 下载通过串行连接从板载闪存到计算机记录运动数据。关闭程序。

6.操纵昆虫控制机器人

注:各操作的定时图9中被指示。

  1. 马达收益操纵
    注意:此操作改变机器人的平移和旋转速度。不对称马达收益产生转动偏置,其可用于研究昆虫如何补偿的偏置17。
    1. 限定通过编辑日为前向和每边17( 图6B)的马达的反向旋转的旋转增益Ë配置文件命名为"param2.txt"使用文本编辑器。
    2. 点击"设置参数2"读取软件程序的编辑过的配置文件。然后,点击"drivemode2"送操纵收益的机器人。
  2. 电动机输出的反转
    注意:此操作提供类似于双边嗅觉输入的反转的状态(参见步骤6.4),并且可以用于研究双边嗅觉的意义。然而,电机的输出的反转也反转板载蛾的自感应视觉运动。倒自感应视觉输入的影响,可以通过与倒置嗅觉输入19进行比较来评价。
    1. 通过横渡控制电缆每个电机反转双边电机控制。
  3. 昆虫运动和机器人的运动之间的时间延迟的操纵。
    注:此操作允许用在感觉运动处理机器人气味跟踪的时间段接受的调查。微控制器存储关于缓冲存储器的运动的数据,然后在指定的时间延迟后进行处理。注意,该机器人具有200毫秒的最大内部时间延迟;因此,实际的时间延迟预计将在指定的时间延迟加上200毫秒16,17。
    1. 在主窗口的一个小盒子输入一个数字(0-10),以指定从0-1,000毫秒,在100毫秒的步骤的时间延迟。
    2. 点击"设置延时"按钮应用的时间延迟。
  4. 嗅觉输入的操纵。
    注意:此操作可用于研究双边嗅觉输入的重要性。 silkmoths的浪涌方向施力的较高浓度侧22。
    1. 改变吸管尖端之间的间隙或反转它们的位置来改变在由每个天线获取的气味浓度差。
  5. 视觉输入的操作
    注意:此操作是调查视觉输入的对气味的跟踪作用。
    1. 覆盖一个白皮书,分别闭塞板载蛾的水平和垂直视场的105°和90°,遮篷。

结果

我们在座的一个气味源的成功国产化所需的昆虫控制机器人的基本特征。机器人和silkmoths,气味递送系统的有效性,并准确双边嗅觉和视觉输入的重要性之间的比较被检查。

气味跟踪行为自如行走蛾和昆虫控制机器人之间的比较示于图10AB.在相同气味的情况下,无论是行走蛾和机器人拿下100%的成?...

讨论

用于通过silkmoth机器人的成功控制的最重要的点是让蛾行走顺畅的空气支撑球和稳定地测量球的旋转。因此,圈养的silkmoth并在适当的位置将其安装在球在此协议中的关键步骤。蛾到附件或球上的蛾不适当定位不当粘附将导致在其上不自然的压力,这扰乱它的正常行走行为和/或引起该光学传感器的故障来测量球的旋转。粗糙化的聚苯乙烯球也很重要,以防止蛾打滑。系留蛾的响应的移动来刺激气?...

披露声明

The authors have nothing to disclose.

致谢

We thank Shigeru Matsuyama for providing purified bombykol. This work was supported by the Japan Society for the Promotion of Science KAKENHI (grant numbers 22700197 and 24650090) and the Human Frontier Science Program (HFSP).

材料

NameCompanyCatalog NumberComments
Male adult silkmoth (Bombyx mori)Rear from eggs, or purchase as pupae.
IncubatorPanasonicMIR-254Store pupae or adult silkmoths at a constant temperature, 238 L.
Plastic boxSunplatecO-3Store pupae or adult silkmoths, 299 × 224 × 62 mm L × W × H.
Copper wire2-mm diameter for the attachment. Any rigid bar can be used as an alternative for making the attachment to tether a silkmoth. 
Plastic sheetKokuyoVF-1420NSold as overhead projector film with thickness of 0.1 mm. Use at the tip of the attachment.
ForcepsAs one5SARemove scales on the thorax.
AdhesiveKonishiG17Bond a silkmoth to the attachment.
Insect-controlled robotCustomBearing an air-supported treadmill, an optical sensor, custom-built AVR-based microcontroller boards, and two DC brushless motors. It is powered by 8 × AA and 3 × 006P batteries.
MicrocontrollerAtmelATMEGA8A component of the insect-controlled robot.
DC blowerNidecA34342-55A component of the insect-controlled robot for floating a ball in an air-supported treadmill. 
DC fanMinebea1606KL-04W-B50A component of the insect-controlled robot for suctioning air containing an odor.
Optical mouse sensorAgilent technologiesHDNS-2000A component of the insect-controlled robot, obtained from an optical mouse (M-GUWSRSV, Elecom, Japan).
Brushless motorMaxonEC-45A component of the insect-controlled robot for driving a wheel.
White polystyrene ballA component of the insect-controlled robot. Diameter 50 mm, mass approximately 2 g.
Bombykol:
(E,Z)-10,12-hexadecadien-1-ol
Shin-Etsu chemicalCustom synthesis.
n-hexaneWako085-00416Solvent for bombykol.
Wind tunnelCustomPulling-air type, sized 1,800 × 900 × 300 mm L × W × H.
BioSignal programCustomA program to establish serial communication between the insect-controlled robot and a PC via Bluetooth. Used for sending commands to start/stop the robot or configuring its motor properties. 
CamcorderSonyHDR-XR520VCapture robot movements.

参考文献

  1. Murlis, J., Jones, C. D. Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol. 6, 71-86 (1981).
  2. Vergassola, M., Villermaux, E., Shraiman, B. I. 'Infotaxis' as a strategy for searching without gradients. Nature. 445, 406-409 (2007).
  3. Kowadlo, G., Russell, R. A. Robot Odor Localization: A Taxonomy and Survey. The International Journal of Robotics Research. 27, 869-894 (2008).
  4. Hernandez Bennetts, V., Lilienthal, A. J., Neumann, P. P., Trincavelli, M. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go. Frontiers in neuroengineering. 4, 20 (2011).
  5. Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol Bull. 198, 203-212 (2000).
  6. Willis, M. A. Chemical plume tracking behavior in animals and mobile robots. Navigation. 55, 127-135 (2008).
  7. Carde, R. T., Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol. 34, 854-866 (2008).
  8. Frye, M. A. Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol. 20, 347-352 (2010).
  9. Russell, R. A. Survey of robotic applications for odor-sensing technology. The International Journal of Robotics Research. 20, 144-162 (2001).
  10. Russell, R. A., Bab-Hadiashar, A., Shepherd, R. L., Wallace, G. G. A comparison of reactive robot chemotaxis algorithms. Robot Auton Syst. 45, 83-97 (2003).
  11. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J. Plume-tracking robots: a new application of chemical sensors. Biol Bull. 200, 222-226 (2001).
  12. Webb, B., Harrison, R. R., Willis, M. A. Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Struct Dev. 33, 301-329 (2004).
  13. Kanzaki, R. How does a microbrain generate adaptive behavior. Int Congr Ser. 1301, 7-14 (2007).
  14. Kanzaki, R., Ando, N., Sakurai, T., Kazawa, T. Understanding and reconstruction of the mobiligence of insects employing multiscale biological approaches and robotics. Adv Robotics. 22, 1605-1628 (2008).
  15. Ravel, N., et al. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy. Plos One. 8, 61220 (2013).
  16. Emoto, S., Ando, N., Takahashi, H., Kanzaki, R. Insect-controlled robot-evaluation of adaptation ability. J Robot Mechatronics. 19, 436-443 (2007).
  17. Ando, N., Emoto, S., Kanzaki, R. Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim. 8, 016008 (2013).
  18. Gatellier, L., Nagao, T., Kanzaki, R. Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol. 207, 2487-2496 (2004).
  19. Ando, N., Kanzaki, R. A simple behaviour provides accuracy and flexibility in odour plume tracking - the robotic control of sensory-motor coupling in silkmoths. J. Exp. Biol. 218, 3845-3854 (2015).
  20. Kaissling, K. E., Beidler, L. M. Insect olfaction. Handbook of Sensory Physiology Vol. 4. , 351-431 (1971).
  21. Kanzaki, R., Sugi, N., Shibuya, T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci. 9, 515-527 (1992).
  22. Takasaki, T., Namiki, S., Kanzaki, R. Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol. A. 198, 295-307 (2012).
  23. Kanzaki, R. Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth. J Comp Physiol A. 182, 267-276 (1998).
  24. Pansopha, P., Ando, N., Kanzaki, R. Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol. 217, 1811-1820 (2014).
  25. Loudon, C., Koehl, M. A. R. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae. J. Exp. Biol. 203, 2977-2990 (2000).
  26. Lebedev, M. A., Nicolelis, M. A. L. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536-546 (2006).
  27. Ejaz, N., Peterson, K. D., Krapp, H. G. An experimental platform to study the closed-loop performance of brain-machine interfaces. Journal of visualized experiments : JoVE. , (2011).
  28. Minegishi, R., Takashima, A., Kurabayashi, D., Kanzaki, R. Construction of a brain-machine hybrid system to evaluate adaptability of an insect. Robot Auton Syst. 60, 692-699 (2012).
  29. Martinez, D., Arhidi, L., Demondion, E., Masson, J. B., Lucas, P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. Journal of visualized experiments : JoVE. , e51704 (2014).
  30. Ortiz, L. I. . A mobile electrophysiology board for autonomous biorobotics. , (2006).
  31. Bohil, C. J., Alicea, B., Biocca, F. A. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci. 12, 752-762 (2011).
  32. Dombeck, D. A., Reiser, M. B. Real neuroscience in virtual worlds. Curr Opin Neurobiol. 22, 3-10 (2012).
  33. Roth, E., Sponberg, S., Cowan, N. J. A comparative approach to closed-loop computation. Curr Opin Neurobiol. 25, 54-62 (2014).
  34. Leinweber, M., et al. Two-photon calcium imaging in mice navigating a virtual reality environment. Journal of visualized experiments : JoVE. , e50885 (2014).
  35. Takalo, J., et al. A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments. Sci Rep. 2, 324 (2012).
  36. Bahl, A., Ammer, G., Schilling, T., Borst, A. Object tracking in motion-blind flies. Nat Neurosci. 16, 730-738 (2013).
  37. Bellmann, D., et al. Optogenetically Induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci. 4, 27 (2010).
  38. Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L., Wilson, R. I. Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature. 493, 424-428 (2013).
  39. Tabuchi, M., et al. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 110, 15455-15460 (2013).
  40. Schulze, A., et al. Dynamical feature extraction at the sensory periphery guides chemotaxis. Elife. 4, 06694 (2015).
  41. Duistermars, B. J., Chow, D. M., Frye, M. A. Flies require bilateral sensory input to track odor gradients in flight. Curr Biol. 19, 1301-1307 (2009).
  42. Gomez-Marin, A., Duistermars, B. J., Frye, M. A., Louis, M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci. 4, 6 (2010).
  43. Sakurai, T., et al. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. Plos Genet. 7, (2011).
  44. Tripathy, S. J., et al. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front Cell Neurosci. 4, 1 (2010).
  45. Daly, K. C., Kalwar, F., Hatfield, M., Staudacher, E., Bradley, S. P. Odor detection in Manduca sexta is optimized when odor stimuli are pulsed at a frequency matching the wing beat during flight. Plos One. 8, 81863 (2013).
  46. Szyszka, P., Gerkin, R. C., Galizia, C. G., Smith, B. H. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc Natl Acad Sci USA. 111, 16925-16930 (2014).
  47. Harvey, D., Lu, T. F., Keller, M. Odor sensor requirements for an insect inspired plume tracking mobile robot. Proceedings of'The 2006 IEEE International Conference on Robotics and Biomimetics. , 130-135 (2006).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

118 silkmoth

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。