需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Here, the experimental protocols are described for preparing Drosophila at different developmental stages and performing longitudinal optical imaging of Drosophila heartbeats using a custom optical coherence microscopy (OCM) system. The cardiac morphological and dynamical changes can be quantitatively characterized by analyzing the heart structural and functional parameters from OCM images.
Longitudinal study of the heartbeat in small animals contributes to understanding structural and functional changes during heart development. Optical coherence microscopy (OCM) has been demonstrated to be capable of imaging small animal hearts with high spatial resolution and ultrahigh imaging speed. The high image contrast and noninvasive properties make OCM ideal for performing longitudinal studies without requiring tissue dissections or staining. Drosophila has been widely used as a model organism in cardiac developmental studies due to its high number of orthologous human disease genes, its similarity of molecular mechanisms and genetic pathways with vertebrates, its short life cycle, and its low culture cost. Here, the experimental protocols are described for the preparation of Drosophila and optical imaging of the heartbeat with a custom OCM system throughout the life cycle of the specimen. By following the steps provided in this report, transverse M-mode and 3D OCM images can be acquired to conduct longitudinal studies of the Drosophila cardiac morphology and function. The en face and axial sectional OCM images and the heart rate (HR) and cardiac activity period (CAP) histograms, were also shown to analyze the heart structural changes and to quantify the heart dynamics during Drosophila metamorphosis, combined with the videos constructed with M-mode images to trace cardiac activity intuitively. Due to the genetic similarity between Drosophila and vertebrates, longitudinal study of heart morphology and dynamics in fruit flies could help reveal the origins of human heart diseases. The protocol here would provide an effective method to perform a wide range of studies to understand the mechanisms of cardiac diseases in humans.
在小动物心脏的纵向研究有助于了解人类的各种心脑血管疾病,如基因相关的先天性心脏缺陷1,2。在过去的几十年中,各种动物模型,例如小鼠3,4-,爪蟾5,6-,斑马鱼7,8,禽流9,和果蝇10-16,已被用来进行人体心脏的开发有关的研究。小鼠模型已被广泛用来研究正常和异常心脏发育,并且由于其相似与人的心脏3,4-心脏缺陷的表型。非洲爪蟾胚胎心脏发育的研究中尤其有用,因为它易于处理和部分透明5,6。胚胎和斑马鱼模型的早期幼虫的透明度,使得心脏发育7,8容易光学观测。禽流模型是心脏发育研究的共同课题因为...E中的心脏可以去除蛋壳和禽流感的心给人类9形态相似后,很容易地访问。 果蝇模型具有一些独特的功能,这使得它非常适合进行心脏的纵向研究。首先, 果蝇的心脏管〜200微米背表面之下,这对于心脏的光纤接入和观察提供了方便。此外,许多分子机制和遗传途径是果蝇和脊椎动物之间保守。人类疾病基因的75%以上的同源基因在果蝇 ,这些都使得它广泛应用于转基因研究11,13被发现了。此外,它具有生命周期短,维护成本低,并已被广泛用作发育生物学研究14-16标本模型。
以前的报告中所述的协议监测果蝇的心脏功能,如他artbeat。然而,被要求17,18解剖程序。光学成像提供了可视化的动物心脏发育的有效方法,因为它的非侵入性的性质。不同的光学成像方法都在进行动物心脏研究中得到应用,如双光子显微镜19,共焦显微镜20,21,光片镜22和光学相干断层扫描(OCT)16,23-26。相比较而言,OCT能够提供在小动物的心大成像深度不使用造影剂,同时保持了高分辨率和超高成像的速度,这是用于成像活体动物重要的。此外,开发一个OCT系统的低成本已经普及这种技术的样品光学成像。 OCT已经被成功地用于果蝇的纵向研究。使用OCT,心脏形态和功能成像已进行研究心脏的结构中,func基因的国的角色,并在突变体模型心血管缺陷心脏发育过程中的机制。例如,年龄依赖性心功能下降是证实了下调血管紧张素转换酶相关(ACER)在果蝇基因与华侨城27基因相关的心肌病表型是使用OCT进行28-33 果蝇证实。研究采用OCT还揭示了人类基因SOX5在34果蝇的心脏功能的作用。与华侨城相比,OCM使用一个客观的具有更高的数值孔径,以提供更好的横向分辨率。在过去,所造成的沉默同源物人体生理基因dCry / DCLOCK的心脏功能障碍已被使用定制OCM系统15,16,以及高脂饮食对果蝇心肌病的效果,了解肥胖诱导人研究心脏疾病。 15
在这里,日Ë实验方案总结为果蝇在二龄(L2),三龄(L3),蛹1天(PD1),蛹天2(PD2),蛹第3天心脏形态和功能变化的纵向研究(PD3) ,蛹天4(PD4),蛹5天(PD5)和成人使用OCM以促进人类有关的先天性心脏病的研究( 图1)。心脏功能参数,如HR和CAP物进行定量分析在不同发育阶段以显示心脏发育的功能。
Access restricted. Please log in or start a trial to view this content.
1. 果蝇 16的光学成像OCM系统的研制
2. 果蝇文化
3.执行与OCM光学成像
4.影像学分析16
Access restricted. Please log in or start a trial to view this content.
纵向心脏成像用的是果蝇与24B-GAL4 / +在室温下用OCM应变进行。测量在L2,L3进行的,并在从PD1 8小时间隔PD4,和成人每天1(AD1)跟踪变态处理( 表1)。幼虫,早期蛹,晚蛹和成虫蝇被安装在中所见图1A的载玻片上。的心脏对幼虫和成虫蝇的段特征在图1B中示意性表示被示出。
在这一发展的研究中,4096架是在32秒,我们的定制OCM系统来跟踪?...
Access restricted. Please log in or start a trial to view this content.
果蝇的心跳加快,大约在幼虫和成虫期400 BPM最大的人力资源,需要很高的成像速度来解决心脏diastoles和心脏收缩(根据经验不低于80帧/秒)。由于小心脏腔室的尺寸和微米尺度心脏壁的厚度(5 - 10微米),高空间分辨率(大于2μm更好)所需的解决心脏管结构。在这项研究中,高分辨率和超高速OCM系统的开发,其中,使用了用600线/毫米透射光栅的分光计和2,048像素行扫描摄像机。 20千赫?...
Access restricted. Please log in or start a trial to view this content.
The authors declare no conflicts of interests related to the current study.
This work was supported by the Lehigh University Start-Up Fund, the NIH (R00EB010071 to C.Z., R15EB019704 to C.Z. and A.L., R03AR063271 to A.L., and R01AG014713 and R01MH060009 to R.E.T.), the NSF (1455613 to C.Z. and A.L.), the Cure Alzheimer's Fund (to R.E.T.), and the Massachusetts General Hospital (Executive Committee on Research Award to A.L.). M.C. and Y.M. was supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2014CB340404.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Custom OCM imaging system | Developed in our lab | ||
my Temp Mini Digital Incubator | Benchmark | H2200-HC | |
Cover glass | AmScope | 200PCS | |
Cotton Ball | RITE AID | ||
Instant Drosophila Formula | CAROLINA | formula 4-24 | |
Yeast | ActiveDry | ||
Microscope | SONY | WILD M420 | |
Brush | Loew-Cornell | 245B | being used to move specimens |
Labview software | National Instruments | ||
ImageJ | National Institutes of Health | ||
Matlab | Mathworks | ||
Tweezer | Wiha | AA SA | to fix the fruit fly wings |
FlyNap | Carolina Biological Supply Company | 4,224,898 | |
Scotch Permanent Double Sided Tape, 3 M | Scotch | ||
Pipette | Fisherbrand | MU18837 | |
Organic Extra Coconut Oil | Spring Valley | 13183 | |
Microscope Slide | CapitolBrand | M3504-E | |
Drosophila Vials | SEOH | 8401SS | |
All-trans-retinal | Sigma-Aldrich Co. | R2500 |
Access restricted. Please log in or start a trial to view this content.
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。