JoVE Logo
教师资源中心

登录

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood

Published: June 23rd, 2017

DOI:

10.3791/55615

1Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2University of Science and Technology of China, 3Department of Physics and Astronomy, University of Manitoba, 4Department of Biosystems Engineering, University of Manitoba, 5Seven Oaks General Hospital, 6Department of Immunology, University of Manitoba, 7Department of Biological Sciences, University of Manitoba
* These authors contributed equally

This article provides the detailed method of performing a rapid neutrophil chemotaxis assay by integrating the on-chip neutrophil isolation from whole blood and the chemotaxis test on a single microfluidic chip.

Neutrophil migration and chemotaxis are critical for our body's immune system. Microfluidic devices are increasingly used for investigating neutrophil migration and chemotaxis owing to their advantages in real-time visualization, precise control of chemical concentration gradient generation, and reduced reagent and sample consumption. Recently, a growing effort has been made by the microfluidic researchers toward developing integrated and easily operated microfluidic chemotaxis analysis systems, directly from whole blood. In this direction, the first all-on-chip method was developed for integrating the magnetic negative purification of neutrophils and the chemotaxis assay from small blood volume samples. This new method permits a rapid sample-to-result neutrophil chemotaxis test in 25 min. In this paper, we provide detailed construction, operation and data analysis method for this all-on-chip chemotaxis assay with a discussion on troubleshooting strategies, limitations and future directions. Representative results of the neutrophil chemotaxis assay testing a defined chemoattractant, N-Formyl-Met-Leu-Phe (fMLP), and sputum from a chronic obstructive pulmonary disease (COPD) patient, using this all-on-chip method are shown. This method is applicable to many cell migration-related investigations and clinical applications.

Chemotaxis, a process of directed cell migration to soluble chemical concentration gradient, is critically involved in many biological processes including immune response1,2,3, tissue development4 and cancer metastasis5. Neutrophils are the most abundant white blood cell subset and play crucial roles in enabling the body's innate host defense functions, as well as in mediating adaptive immune responses6,7. Neutrophils are equipped with highly-regulated chemotactic ma....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All human sample collection protocols were approved by the Joint-Faculty Research Ethics Board at the University of Manitoba, Winnipeg.

1. Microfluidic Device Fabrication (Figure 1A)

  1. Design and print transparency mask.
    1. Design the device as detailed previously25. See Figure 1A.
      NOTE: The device includes two layers. The first layer (4 µm high) defines the cell.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Neutrophils are negatively selected from a drop of whole blood directly in the microfluidic device. The purity of the isolated neutrophils was verified by on-chip Giemsa staining and the results showed the typical ring-shaped and lobe-shaped nuclei of neutrophils (Figure 2A)25. This indicates an effective on-chip neutrophil isolation at high purity from a small volume of whole blood. Furthermore, the docking structure can effectively a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this paper, a detailed protocol to directly isolate neutrophils from whole blood followed by the chemotaxis test, all on a single microfluidic chip, was described. This method offers useful features in its easy operation, negative selection of high purity neutrophils, rapid sample-to-result chemotaxis test, reduced reagents and sample consumption, and accurate cell migration data analysis. As a rough estimate, at least 25% of the neutrophils from the input whole blood sample effectively entered the docking structure i.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work is in part supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). We thank the Clinical Institute of Applied Research and Education at the Victoria General Hospital in Winnipeg and Seven Oaks General Hospital in Winnipeg for managing clinical samples from human subjects. We thank Dr. Hagit Peretz-Soroka for helpful discussion about the assay operation strategies. We thank Professor Carolyn Ren and Dr. Xiaoming (Cody) Chen from the University of Waterloo for their....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Device fabrication
Mask alignerABMN/A
SpinnerSolitec5000
HotplateVWR11301-022
Plasma cleanerHarrick PlasmaPDC-001
Vacuum dessicatorFisher Scientific08-594-15A
Digital scaleOhausCS200
SU-8 2000 thinnerMicrochemSU-8 2000
SU-8 2025 photoresistMicrochemSU-8 2025
SU-8 developerMicrochemSU-8 developer
Si waferSilicon, IncLG2065
isopropyl alcoholFisher ScientificA416-4
(tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilaneGelest78560-45-9
Polydimethylsiloxane
(PDMS)
Ellsworth Adhesives2065622
Petri DishFisher ScientificFB0875714
Glass slidesFisher Scientific12-544-4
Cutting padN/AN/ACustom-made
PunchersN/AN/ACustom-made
Name SourceCatalog NumberComments
On-chip cell isolation and chemotaxis assay
RPMI 1640Fisher ScientificSH3025502
DPBSFisher ScientificSH3002802
Bovine serum albumin
(BSA)
Sigma-AldrichSH3057402
FibronectinVWRCACB356008
fMLPSigma-AldrichF3506-10MG
Magnetic disksIndigo Instruments44202-15 mm in diameter,
1 mm thick
FITC-DextranSigma-AldrichFD10S
Rhodamine
Sigma-Aldrich
R4127-5G
Giemsa stain solutionRowley Biochemical Inc.G-472-1-8OZ
EasySep Direct Human
Neutrophil Isolation
Kit
STEMCELL
Technologies Inc
19666
DithiothreitolSigma-AldrichD0632
Nikon Ti-U inverted fluorescent microscope NikonTi-U
Microscope environmental chamber.InVivo ScientificN/A
CCD cameraNikonDS-Fi1

  1. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13 (13), 159-175 (2013).
  2. Luster, A. D., Alon, R., von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 6 (12), 1182-1190 (2005).
  3. Griffith, J. W., Luster, A. D. Targeting cells in motion: migrating toward improved therapies. Eur. J. Immunol. 43 (6), 1430-1435 (2013).
  4. Laird, D. J., von Andrian, U. H., Wagers, A. J. Stem cell trafficking in tissue development, growth, and disease. Cell. 132 (4), 612-630 (2008).
  5. Condeelis, J., Segall, J. E. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 3 (12), 921-930 (2003).
  6. Kruger, P., et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 11 (3), e1004651 (2015).
  7. Mócsai, A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 210 (7), 1283-1299 (2013).
  8. Foxman, E. F., Campbell, J. J., Butcher, E. C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J Cell Biol. 139 (7), 1349-1360 (1997).
  9. Tazzyman, S., Niaz, H., Murdoch, C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol. 23 (3), 149-158 (2013).
  10. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 115 (3), 453-466 (1962).
  11. Wu, J., Wu, X., Lin, F. Recent developments in microfluidics-based chemotaxis studies. Lab Chip. 13 (13), 2484-2499 (2013).
  12. Sackmann, E. K., Fulton, A. L., Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature. 507 (7491), 181-189 (2014).
  13. Kim, S., Kim, H. J., Jeon, N. L. Biological applications of microfluidic gradient devices. Integr Biol. 2 (11-12), 584-603 (2010).
  14. Irimia, D., et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip. 6 (2), 191-198 (2006).
  15. Lin, F., et al. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Ann Biomed Eng. 33 (4), 475-482 (2005).
  16. Ambravaneswaran, V., Wong, I. Y., Aranyosi, A. J., Toner, M., Irimia, D. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol. 2 (11-12), 639-647 (2010).
  17. Jones, C. N., et al. Spontaneous neutrophil migration patterns during sepsis after major burns. PloS One. 9 (12), e114509 (2014).
  18. Butler, K. L., et al. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PloS One. 5 (7), e11921 (2010).
  19. Wu, J., et al. A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients. PloS One. 10 (5), e0126523 (2015).
  20. Sackmann, E. K., et al. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood. 120 (14), e45-e53 (2012).
  21. Agrawal, N., Toner, M., Irimia, D. Neutrophil migration assay from a drop of blood. Lab Chip. 8 (12), 2054-2061 (2008).
  22. Jones, C. N., et al. Microfluidic platform for measuring neutrophil chemotaxis from unprocessed human whole blood. J Vis Exp. (88), (2014).
  23. Jones, C. N., et al. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukocyte Biol. 100 (1), 241-247 (2016).
  24. Sackmann, E. K. -. H., et al. Characterizing asthma from a drop of blood using neutrophil chemotaxis. P Natl Acad Sci. 111 (16), 5813-5818 (2014).
  25. Wu, J., et al. An all-on-chip method for testing neutrophil chemotaxis induced by fMLP and COPD patient's sputum. Technology. 04 (02), 104-109 (2016).

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。