Method Article
本文介绍了哈佛环境商会 (hec) 和测量气体和颗粒种类的相关仪器的操作过程。环境室用于生产和研究由有机前体产生的次生有机物种, 特别是与大气中的有机颗粒物有关的有机物种。
大气有机颗粒物 (pm) 的产生和演变对于大气化学和气候的准确模拟没有得到充分的理解。复杂的生产机制和反应途径使这成为一个具有挑战性的研究课题。为解决这些问题, 需要一个环境室, 为二次有机材料提供足够的停留时间和接近环境的前体浓度。哈佛环境商会 (hec) 是为满足这一需求而建造的, 模拟挥发性有机化合物 (vocs) 产生的气体和粒子相种。在典型的操作条件下, hec的容量为 4.7 m 3, 平均停留时间为3.4 小时。它作为一个完全混合的流反应器 (cmfr) 运行, 为样品收集和数据分析提供了连续几天不确定的稳态运行的可能性。本文详细介绍了操作过程。有几种类型的仪器被用来表征所产生的气体和颗粒。高分辨率战斗时间气溶胶质谱仪 (hr-tof-ams) 被用来表征粒子。质子-转移反应质谱仪 (pt-ms) 用于气体分析。实例表明, 环境室在与有机大气颗粒物的物理化学特性和反应机理有关的各种应用中的应用。
大气有机颗粒物 (pm) 是由生物圈和人类活动 1, 2 所排放的挥发性有机化合物 (vocs) 氧化而产生的。尽管这些气溶胶颗粒对气候、人类健康和能见度3有重要影响, 但生产机制在质量和数量上仍然没有得到完全的理解和表征。实验室研究的一个挑战是模拟气体和粒子相物种的大气演变, 这必然是范围和时间有限的。停留时间必须足够长, 气体和颗粒相的化合物可以像在环境环境中的 4,5,6, 7,一样进行氧化和多相反应. 8。另一个挑战是在实验室以足够低的浓度工作, 代表环境9、10、11.许多重要的过程随着浓度的增加而扩展。例如, 在实验室实验中, 有机 pm 质量浓度过高, 可能会错误地将半挥发性物种的划分从气相转移到颗粒相。气体和粒子相的组成可能不代表大气条件。哈佛环境商会的设计是为了应对这些挑战, 主要是通过使用在不确定的时间范围内运行的连续流量配置的方法, 从而允许低浓度和较长的集成时间。信号检测。商会在2018年庆祝科学发现12年的具有里程碑意义的周年纪念日。
环境室根据光源、流动混合系统、大小和一起工作的室数量而有所不同。有可接收自然阳光的室外室12、13以及使用人造光线的室内室 14、15、16、17、18 ,19,20,21。室外室也可以建造相对较大的, 最大限度地减少了墙面效应可能带来的伪影, 尽管挑战包括由于云层而导致的照明变化以及温度的变化。虽然室内室可以仔细控制温度和相对湿度, 但人工光的强度和光谱一般与自然阳光不同, 这可能会影响某些光化学反应 14.箱体也可以作为批处理反应器或完全混合流动反应器 (cmfr)22运行。批处理反应器通常更易于操作和维护, 但 cmfr 可以根据需要运行数周, 以允许信号集成, 从而在低的、大气相关的浓度下工作。
本文详细介绍了哈佛环境商会 (hec)7、23、24、25的硬件和运作情况。hec 由一个4.7 米 3 pfa teflon 袋组成, 放在恒温室 (2.5x2.5x2.75 米3)内26.反光铝板覆盖在腔内壁, 允许多径照明通过袋, 从而提高光化学的速度。hec 是作为 cmfr 运行的, 使用的总流量为 21 slpm, 相当于平均停留时间为 3.4 h27。温度、湿度和臭氧浓度通过反馈控制来保持。硫酸铵颗粒被用作种子颗粒, 以模拟有机成分在周围环境中的无机颗粒上的冷凝。选择无机硫酸盐颗粒的模式直径为100-200 纳米, 以模拟在28 场测量的颗粒大小。本文的协议部分介绍了操作过程, 包括直观的演示, 然后简要讨论了 hec 的应用和研究成果。
注: 测量的主要环境参数包括臭氧 (臭氧分析仪)、no 和 no2 (氮氧化物分析仪)、相对湿度 (rh 传感器)、温度 (k 型热电偶) 以及袋子与室之间的差压。仪器品牌列在材料表中。仪器测量的环境参数必须稳定, 并在实验开始前符合设计要求。环境室使用反馈系统不断监测和调整控制, 以便在整个实验过程中保持环境参数在要求范围内。
1. 启动过程
2. 种子颗粒生产
注: 在种子颗粒注射之前, 初始颗粒浓度低于1厘米-3。
3. 注入气相前体
4. 仪器测量
注: 异戊烯和紫外光的结合导致在硫酸盐种子颗粒上产生二次有机材料。
5. 实验结束和袋清洗
图 6显示了 hr-tof-ams 在一次实验中记录的有机质量浓度时间序列的一个示例。实验条件为 490 ppb 异戊橡胶, uv 灯开启, 提供 oh 自由基作为氧化剂。实验开始后, 有机 pm 的质量浓度稳步上升, 直到达到约4小时稳定状态后。图7显示了由主要异戊烷引起的 c4h6 o + 信号强度的时间序列氧化产物 (例如, 甲基乙烯基酮、甲氨蝶呤和几种有机过氧化物)。照明开始后,c4h6o +信号强度增加, 并继续这样做, 直到50分钟后达到稳定状态.
这些数字说明了 hec 中次生有机物质的时间演化。注射、反应和自旋后达到稳定状态, ams 数据表明, 颗粒由有机化合物组成, 有机成分的浓度随着时间的推移而增加。ptr-ms 数据显示, 源体从气相中丢失, 第一代产物物种在反应启动后出现。在线和离线测量的数据分析通常侧重于稳态周期。有机会进行需要几天才能完成的实验, 因为通过使用 cmfr 操作, 对重要的腔体参数进行反馈控制, 气体和粒子相物种的浓度无限期地保持稳定。总之, hec 被用来模拟大气化学, 从而测试假设和理解与了解空气污染, 粒子的气候影响, 甚至气溶胶的健康影响的重要主题。
图 1.哈佛环境商会 (hec) 示意图.这些线代表气溶胶的流动。左侧面板显示用于监测反应条件的仪器。正确的面板列出了用于表征粒子和气相物种的仪器。这一数字改编自 king 等人.26 请点击这里查看此图的较大版本.
图 2.用于监测温度、臭氧、相对湿度和压力等物种的自行开发程序的图形用户界面。请点击这里查看此图的较大版本.
图 3.用于使用 smps 记录数字直径分布的软件的图形用户界面.请点击这里查看此图的较大版本.
图 4.软件的图形用户界面操作气溶胶质谱仪.请点击这里查看此图的较大版本.
图 5.图形用户界面的软件, 以控制质子传输反应质谱仪 (ptr-ms) 请点击这里查看此图的更大版本.
图 6.有机 pm 的示例测量, 该测量的特征是气溶胶质谱仪.红线表示有机离子的总信号强度。所示数据与异戊烷注入后不久和开始紫外线照射相对应。请点击这里查看此图的较大版本.
图 7.c4h6 o + 离子的信号强度是质子-转相反应质谱法测量异戊烷光氧化测量的主要产物。照明后8分钟信号强度开始增加, 50分钟时达到稳定状态,请点击此处查看此图的较大版本.
在理解有机气溶胶的形成和演化方面越来越重要, 这导致了在控制良好的环境中建造环境室模拟此类过程的冲动。目前, 大多数环境室都是以间歇反应器模式19、31、32、33、34为基础的, 而利用连续混合的室很少反应堆模式15,35。在连续流动反应器模式下操作环境室, 为在类似环境的浓度下连续取样几天甚至数周提供了便利。值得注意的是, 环境条件比控制良好的实验室环境复杂得多。例如, 环境温度波动, 而在室内温度保持在一个恒定值。室内气体和颗粒的反应时间将由室内的住所控制和限制, 而不是在现实世界中达到几天的反应时间。使用黑光, 而不是自然的太阳辐射, 也可以产生 oh 自由基, 并模拟在环境中的反应。但与周围环境相比, 黑光有时会导致 oh 自由基浓度升高, 这可能会影响有机分子的氧化状态, 需要仔细研究。然而, 通过只调整一个或两个变量并通过环境室控制所有其他变量, 我们可以系统地研究这些化学物理过程。
连续混合室运行的关键步骤之一是将室内压力保持在最佳范围内。室内高压会导致气体和颗粒从室内泄漏, 而室内的低压会将实验室的空气和颗粒吸入室内并造成污染。在整个实验过程中, 需要一个压力表来监测室内在安全值 (和 lt;5 pa) 范围内的压力。环境室的另一个常见观测问题是意外的有机粒子自成核。为了避免这种现象, 需要较低的 voc/氧化剂注射率或较高的种子颗粒浓度。根据实验的目的, 臭氧、voc 和种子颗粒的浓度可能会有一个数量级的变化。下面的公式可用于计算注入腔中的每个物种的流速 f 注入。
(2)
其中c目标和c初始分别表示腔内反应物的最终目标浓度和从源生成的反应物的初始浓度。符号f总代表注入腔内的所有物种的总流量。
成功操作环境室并获得结果的第三个关键步骤是在实验前对每个仪器进行校准。smps 系统可以通过注入已知尺寸的 psl 粒子36进行校准。no x和臭氧分析仪使用由 n2 稀释的 5 ppm no 缸和分别由n2稀释的 10 ppm 臭氧校准.ams 和 pt-ms 的校准过程很复杂, 可在仪器手册或以前的文献27,37中找到。
上述环境室装置不仅适用于研究有机气溶胶的生产和演化, 而且适用于用有机涂层包覆各种颗粒, 以及通过注入气体检测气相反应仅前体。这些多个方向为环境室提供了研究与空气质量、气候变化和人类健康主题有关的各种研究领域的灵活性。
提交人声明没有相互竞争的经济利益。
这些材料是根据美国国家科学基金会 (nsf) 化学系环境化学科学项目支持的工作编写的, 该项目的赠款编号为 1111418, 是美国国家科学的大气地球化学司基金会 (nsf), 资助编号 1524731, 以及哈佛学院出版奖。我们感谢刘鹏飞、陈琪和库瓦塔对实验的有益讨论和协助, 并感谢埃里克·埃科维奇成为视频的配音。
Name | Company | Catalog Number | Comments |
(-)-α-pinene | Sigma-Aldrich | 305715 | |
2-butanol | Sigma-Aldrich | 294810 | |
5.00 mL syringe | Hamilton | 201300 | |
Aerosol particle mass analyzer | Kanomax | 3600 | |
Condensational particle counter | TSI | 3022 | |
Differential mobility analyzer | TSI | 3081 | |
Heating mantle | Cole-parmer | WU-36225-10 | |
Mass flow controller | MKS | M100B | |
Nafion tube | Perma Pure | MD-700-24F-1 | |
Nanometer aerosol sampler | TSI | 3089 | |
Ozone generator | Jelight | 600 | |
Ozone monitor | Ecosensors | UV-100 | |
Pressure sensor | Omega | PX409 | |
RH sensor | Rotronic | 60587161 | |
Round-bottom, three neck flask | Aceglass | 6944-04 | |
Scanning electron microscope | Zeiss | N/A | Ultra plus FESEM |
Scanning mobility particle sizer | TSI | 3071A+3772 | electrostatic classifier is model 3071A and the condensational particle ocunter is 3772 |
Silicon substrate | University Wafer | 1707 | |
Syringe Needle | Hamilton | 90025 | 25 G, 2 inch |
Syringe pump | Chemyx | Fusion Touch 200 | |
Temperature sensor | National Instrument | USB-TC01 | |
water circulator | Brinkmann | RC6 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。