JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

腿筋是一组肌肉, 有时是问题的运动员, 导致软组织损伤的下肢。为了防止这种伤害, 对腿筋的功能训练需要强烈的偏心收缩。另外, 在不同的收缩速度下, 应根据 quadricep 功能对腘绳肌功能进行测试。

摘要

在身体活动期间发生的许多肌腱损伤发生在肌肉延长时, 在偏心的腿筋肌肉动作。与这些偏心的腿筋的行动相反的是同心四头肌的行动, 其中较大和可能更强的四头肌伸直膝。因此, 为了在运动中稳定下肢, 腿筋必须与四头肌强烈的膝关节矫直力矩进行偏心的对抗。因此, 相对于同心 quadricep 强度表示的偏心肌筋强度通常称为 "功能比", 因为大多数运动运动都需要同时同心膝关节伸展和偏心膝关节屈曲。为了提高腿筋的强度、韧性和功能性, 有必要对不同偏心速度下的腘绳筋进行测试和训练。这项工作的主要目的是提供测量和解释偏心腿筋强度的指导。提供了用等速功测量函数比的方法, 并比较了样本数据。此外, 我们简要描述如何解决腿部肌肉的力量不足或单边力量的差异, 使用专门侧重于增加偏心肌筋强度的演习。

引言

膝关节屈肌与伸肌腱的关系已被确定为评估一个人的下肢损伤风险的一个重要参数1。具体来说, 当与 quadricep 强度2相比, 当同侧或双侧肌筋强度失衡时, 腿部肌腱损伤的几率增加。因此, 许多体育科学家和从业者测试膝盖屈和伸肌的力量, 以确定是否有可能导致腿部肌腱损伤的运动员。但是, 使用各种测试方法, 不允许在方法 (例如、不同的收缩速度、不同的肌肉动作和现场测试与实验室测试) 之间进行直接比较3,4,5,6,7,8,9. 虽然不同的测试方法提供了不同的关于强度水平的有价值的信息, 但是大腿肌肉等速强度测试的方法学方法应该统一起来, 以便在个人之间进行比较,人口和时间。

尽管对同侧膝屈伸和屈伸之间的失衡的评估常常被描述为使用传统的同心肌腱与同心四头肌比率 (H/QCONV)10,11,膝关节屈伸和屈伸的共同激活是已知的发生在所有的运动和发生通过反对收缩模式。解释, 膝关节屈伸主要参与跳跃和跑步过程中的推进, 而膝盖屈伸主要是稳定的膝盖在着陆和运行通过减速下肢和抵消快速和有力的同心屈伸的收缩。由于大多数运动运动需要同时同心膝关节伸展和偏心膝关节屈曲, 两者之间的相对强度比较是适当的。因此, 相对于同心膝伸肌强度的偏心膝屈强度是常见的测试, 被称为 "功能比" (H/Q 函数)12

与0.43 到 0.90 12之间的 h/qCONV比率相比, h-/q 函数比率可以从0.4 到 1.413不等, 这表明不同协议中的数据不应相互比较。虽然最大同心扭矩减少, 同心速度增加14,15,16, 偏心扭矩大于同心扭矩, 因为速度增加16,17。因此, 当测试收缩速度增加 1318时, H/Q 函数比可以接近值1.0。由于大多数运动运动发生在高速度, 膝伸和屈肌强度测试可能更符合生态学上的更高速度。因此, 这种强度测试协议应包括逐步提高的速度逐步推进。

如果等速测试显示偏心筋和同心 quadricep 强度存在较大差异, 则应通过训练缩小差异。为此, 减少膝伸肌的强度绝不应补偿弱膝屈伸, 以牺牲更有利的 H/Q 功能比率, 特别是在体育环境中.另一种选择是渐进和密集地增加膝关节屈肌强度, 使腿筋变得更强, 特别是与四头肌腱, 以更高的速度。因此, 如果等速测试揭示了某种程度的腘绳肌无力, 训练干预可能是必要的, 以增加腿部肌肉的力量, 特别是在偏心运动的动作。与所有训练干预一样, 应进行随访测试, 以确定偏心聚焦的腘绳肌强度训练计划的有效性, 并可能需要进一步调整。本文的目的是描述如何测试等速功能偏心肌筋强度, 揭示潜在的腘绳肌无力, 并建议如何解决功能性腘绳无力。

Access restricted. Please log in or start a trial to view this content.

研究方案

该议定书遵循了查尔斯大学人类研究伦理学委员会的指导方针, 体育体育系, 并已被批准作为研究的一部分。

1. 通过以下步骤熟悉所有受试者的等速测试

  1. 确保在过去的6月内, 受试者在下肢没有任何最近的肌肉骨骼损伤或疼痛。如果一个主题报告最近的膝盖疼痛, 或在测试期间膝盖疼痛, 排除的主题。
  2. 由于偏心等速测试可能是对许多人的一种新的刺激, 使主题与协议在一个有效的等速测功机19,20 (步骤1.3 到 1.7.6, 下面) 至少两次, 然后参加官方测试。指导受试者在测试前不进行任何低体阻力训练或其他剧烈运动, 72 小时。
  3. 首先, 通过一般的热身来引导主题。
    1. 指示受试者慢跑5-10 分钟或周期为5-10 分钟的测力计与阻力 1.5-2 瓦特/千克的身体质量与节奏在 60-90 rpm 之间。
    2. 骑自行车后, 指示受试者在瑞士球上执行两组8-10 身体重量的刺和8-10 腿筋卷曲, 每条腿与1分钟的休息之间的集合。
    3. 接下来, 引导主题通过动态伸展下肢, 包括四头肌和腿筋21
  4. 将该主题显示为等速力矩角曲线的一个例子, 并说明在测试期间将提供实时视觉反馈。
  5. 解释, 这个主题应该 "尽可能快地踢出", 为同心膝关节伸展和 "尽可能快地拉回" 为同心膝关节屈曲。还解释说, 这台机器在偏心动作时会自行移动, 但在偏心膝部伸展时, 受试者应尽量 "用力推" (四头肌偏心作用) 和 "尽可能用力拉"。(腿筋的偏心动作)。
  6. 允许主题询问任何问题, 并确保他们了解在测试过程中会发生什么。明确指出, 如果在测试过程中遇到任何疼痛或不适, 使主题希望在任何时候终止测试, 则该主题应立即通知研究员, 测试可以安全地中止。
  7. 启动表1中列出的预置协议, 并通过该协议不断引导主题。
    1. 使用棕22的建议, 将主题定位在测功器上, 该位置具有100°的臀部角度。调整测功机的设置, 以确保主体的臀部一直向后和与椅子接触, 而测功机的转轴轴与受试者膝部的旋转轴线是一致的。
    2. 在使用测功机上的垫片和皮带时, 指示受试者在固定肩部、骨盆和大腿时要保持深呼吸。将测功机的杠杆臂固定在胫骨远端, 垫放在内侧踝尖部2.5 厘米以上, 但不支持非运动下肢。
    3. 在调整皮带、测功机设置或两种必要的同时, 允许主体被动地、积极地进行运动的完全伸展和屈曲范围。
    4. 确保主题可以看到一个屏幕, 显示扭矩角度曲线, 并提供一个口头倒计时开始测试。在所有测试工作中, 指示受试者持有位于座椅一侧的拉手。
    5. 通过使用诸如 "去"、"用力推"、"拉"、"拉"、"拉"、等短语来开始测试并口头鼓励主题。在休息时间间隔内, 为主题提供有关即将完成任务的简短说明。
    6. 完成该协议后, 允许主体从测功机椅上取出, 并调整测功机以测试另一肢。
    7. 在重新定位和调整机器后, 再次执行重力校正测量, 并开始对未测试的下肢进行测试。
  8. 打开显示角扭矩曲线的测试结果, 并检查该主体是否达到了整个运动所选的收缩速度。
    1. 要确定所需的速度是否已完成, 请确保角度-扭矩曲线似乎没有中断 (图 1)。
    2. 如果曲线看起来中断 (图 2), 则可能是该主题没有足够快地推动或拉动杠杆臂, 以使测功器能够注册扭矩。如果该主题无法达到所需的角速度和寄存器扭矩, 继续与其他熟悉或排除该主题从研究和检查关节膝盖病变的可能性23

2. 两次熟悉访问后的等速强度测量

  1. 根据表 1设置测功机的软件来执行测试, 并完成步骤1.3 至1.7.6 中所述的协议。
  2. 在协议结束后, 允许主题离开椅子, 开始分析数据。

3. 腿筋对股四头肌功能比率计算

  1. 在每一个给定的速度和类型的肌肉行动中, 使用所有三试验的最佳峰值扭矩值。将峰值扭矩数据和结果比率插入到数据组织软件中, 可以以图形方式描述诸如 Microsoft Excel 这样的数据。
  2. 通过在 60°·s-1的四头肌同心峰值扭矩除以 60°·s-1上的腿筋偏心峰值扭矩, 计算 H/QFUNC60比率。
  3. 通过在 180°·s-1的四头肌同心峰值扭矩除以 180°·s-1上的腿筋偏心峰值扭矩, 计算 H/QFUNC180比率。
  4. 通过在 240°·s-1的四头肌同心峰值扭矩除以 240°·s-1上的腿筋偏心峰值扭矩, 计算 H/QFUNC240比率。
  5. 创建类似于表2的表后, 将 H/Q 函数的比率与不同的速度以及左右四肢进行比较.
    1. 将实测峰值与同一年龄和性别的类似运动组的规范性数据进行比较。
    2. 通过比较左右四肢在每一个测试的速度来确定双边失衡是否存在。
    3. 确定同一个速度的同侧 H/Qconv比率是否高于或低于 0.624。如果值低于 0.6, 则与股四头肌相比, 同侧肌腱无力;设计一个特定的腿筋加强干预 (4 节)。
    4. 确定同侧的 H/Q 函数比率是否随速度的增加而增加, 并达到所需的值 1.012, 18, 最好是 180°·s-1的速度。如果总部的功能不随速度的增加而增加, 则实施腿筋训练以解决腿筋的相互作用 (4 节).

4. 偏心肌筋强度训练实例

  1. 请咨询训练有素的专业25, 如认证的强度和调理专家, 以选择各种运动, 目标的腿筋横跨各种肌肉长度, 速度和运动模式。
    1. 请咨询练习专家, 以了解在着陆和跳跃过程中改善神经肌肉控制的练习, 以及减少腿部肌腱损伤风险的练习。
    2. 在专业人士的指导下, 使用北欧卷曲 (俄罗斯卷曲) 运动, 可以加强腿部筋和降低伤害的风险26,27, 因为这项工作的重点是偏心筋肌腱加强。
    3. 在专业指导下, 在瑞士球上使用单边膝 flexions 加强筋, 并可能减少双边强度赤字28,29
    4. 在专业人士的指导下, 使用单边或双边罗马尼亚 deadlifts, 良好的晨操, 或两者都加强臀部伸展功能的腿筋28,30,31
    5. 在专业的指导下, 使用复杂的练习来加强腿筋和四头肌在 "三重伸展" 练习中, 臀部, 膝盖和脚踝同时弯曲和伸展, 如蹲, deadlift 和刺。
    6. 在专业人士的指导下, 使用运动, 如跳跃或其他重复跳跃训练本体在下肢。
  2. 在专业指导下, 逐步增加体重练习中的集合和重复次数, 如北欧卷曲和瑞士球32上的单边腿筋卷曲, 同时也逐渐增加外部阻力和减少复杂练习中的重复次数 (例如, 请参见表 3)。

Access restricted. Please log in or start a trial to view this content.

结果

下面的例子显示了年轻的优秀足球运动员 (15.4 岁0.5 岁, 身体质量 62.7, 8.2 公斤, 身高 175, 9.1, 训练经验超过8年) 的差异, 执行偏心腿筋训练 (EHT, n = 18) 和没有 EHT (n = 15) 12 周 (图 3)。执行 EHT 的小组每周两次包括这项练习, 而没有 EHT 的小组则进行了核心训练和一般的下肢计划。两个小组参加了他们的节目四月。

Access restricted. Please log in or start a trial to view this content.

讨论

上述议定书的第一个关键步骤是运动员的熟悉, 特别是对偏心测试。对象可能需要熟悉三次, 以确保可靠的数据, 在这种等速测试。此外, 如果测试会话相隔两个月以上, 则重新熟悉主题可能是一个好主意。第二个关键步骤是在测功机上正确设置运动员, 确保膝轴与测功机轴线保持一致;同样重要的是要注意的是, 更强的个人可能会推或拉如此用力的杠杆臂, 座椅垫变得沮丧或膝关节可能会略微向前或?...

Access restricted. Please log in or start a trial to view this content.

披露声明

报告没有利益冲突。

致谢

作者希望感谢大家对这项研究中的所有主题表示感谢。资助来源捷克科学基金会 GACR 16-13750S、PRIMUS/17/MED/5 和叔叔032项目的研究补助金。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
HumacNormCSMI, Stoughton, MA, USA021-54412236 (model 502140)Standard Dynamometr
SoftwareHumac 2015Computer Sports Medicine Inc. Stoughton, MA, USAVersion155Software for dynamometr

参考文献

  1. Hughes, G., Watkins, J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 36 (5), 411-428 (2006).
  2. Dauty, M., Potiron-Josse, M., Rochcongar, P. Identification of previous hamstring muscle injury by isokinetic concentric and eccentric torque measurement in elite soccer player. Isokinet Exerc Sci. 11 (3), 139-144 (2003).
  3. Lehnert, M., Stastny, P., Tufano, J. J., Stolfa, P. Changes in Isokinetic Muscle Strength in Adolescent Soccer Players after 10 Weeks of Pre-Season Training. The Open Sports Sciences Journal. 10, 27-36 (2017).
  4. Andersen, L. L., et al. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol. 99 (1), 87-94 (2005).
  5. Lehnert, M., et al. Changes in injury risk mechanisms after soccer specific fatigue in male youth soccer players. J Hum Kinet. 62, 1-10 (2018).
  6. Lipinska, P., Szwarc, A. Laboratory tests and game performance of young soccer players. Trends in Sport Sciences. 23 (1), (2016).
  7. Stania, M., et al. The effect of the training with the different combinations of frequency and peak-to-peak vibration displacement of whole-body vibration on the strength of knee flexors and extensors. Biol Sport. 34 (2), 127(2017).
  8. Lehnert, M., et al. Training-induced changes in physical performance can be achieved without body mass reduction after eight week of strength and injury prevention oriented programme in volleyball female players. Biol Sport. 34 (2), 205-213 (2017).
  9. Kabaciński, J., Murawa, M., Fryzowicz, A., Dworak, L. B. A comparison of isokinetic knee strength and power output ratios between female basketball and volleyball players. Human Movement. 18 (3), 40-45 (2017).
  10. Andrade, M. D. S., et al. Isokinetic hamstrings-to-quadriceps peak torque ratio: the influence of sport modality, gender, and angular velocity. J Sports Sci. 30 (6), 547-553 (2012).
  11. Lund-Hanssen, H., Gannon, J., Engebretsen, L., Holen, K., Hammer, S. Isokinetic muscle performance in healthy female handball players and players with a unilateral anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 6 (3), 172-175 (1996).
  12. Coombs, R., Garbutt, G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J Sports Sci Med. 1 (3), 56(2002).
  13. Aagaard, P., Simonsen, E. B., Magnusson, S. P., Larsson, B., Dyhre-Poulsen, P. A new concept for isokinetic hamstring: quadriceps muscle strength ratio. Am J Sports Med. 26 (2), 231-237 (1998).
  14. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond B Biol Sci. 126 (843), 136-195 (1938).
  15. Hill, A. Production and absorption of work by muscle. Science. 131 (3404), 897-903 (1960).
  16. Carney, K. R., Brown, L. E., Coburn, J. W., Spiering, B. A., Bottaro, M. Eccentric torque-velocity and power-velocity relationships in men and women. Eur J Sport Sci. 12 (2), 139-144 (2012).
  17. Haeufle, D., Günther, M., Bayer, A., Schmitt, S. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech. 47 (6), 1531-1536 (2014).
  18. Aagaard, P., Simonsen, E. B., Trolle, M., Bangsbo, J., Klausen, K. Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Acta Physiologica. 154 (4), 421-427 (1995).
  19. Impellizzeri, F. M., Bizzini, M., Rampinini, E., Cereda, F., Maffiuletti, N. A. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging. 28 (2), 113-119 (2008).
  20. Alvares, J. B. dA. R., et al. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport. 16 (1), 59-65 (2015).
  21. Manoel, M. E., Harris-Love, M. O., Danoff, J. V., Miller, T. A. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Condit Res. 22 (5), 1528-1534 (2008).
  22. Brown, L. E. Isokinetics in human performance. , Human Kinetics. (2000).
  23. Iacono, A. D., et al. Isokinetic moment curve abnormalities are associated with articular knee lesions. Biol Sport. , 83-91 (2017).
  24. Hoffman, J., Maresh, C., Armstrong, L. Isokinetic and dynamic constant resistance strength testing: Implications for sport. Physical Therapy Practice. 2, 42-53 (1992).
  25. Maciaszek, J. Muscles training for the stability of the spine. Trends in Sport Sciences. 24 (2), (2017).
  26. Engebretsen, A. H., Myklebust, G., Holme, I., Engebretsen, L., Bahr, R. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. A J Sports Med. 38 (6), 1147-1153 (2010).
  27. Al Attar, W. S. A., Soomro, N., Sinclair, P. J., Pappas, E., Sanders, R. H. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: A systematic review and meta-analysis. Sports Med. , 1-10 (2017).
  28. Wright, G. A., Delong, T. H., Gehlsen, G. Electromyographic Activity of the Hamstrings During Performance of the Leg Curl, Stiff-Leg Deadlift, and Back Squat Movements. J Strength Condit Res. 13 (2), 168-174 (1999).
  29. Hedayatpour, N., Golestani, A., Izanloo, Z., Meghdadi, m Unilateral leg resistance training improves time to task failure of the contralateral untrained leg. Acta Gymnica. 47 (2), 72-77 (2017).
  30. Ebben, W. P. Hamstring activation during lower body resistance training exercises. Int J Sports Physiol Perform. 4 (1), 84-96 (2009).
  31. Vigotsky, A. D., Harper, E. N., Ryan, D. R., Contreras, B. Effects of load on good morning kinematics and EMG activity. PeerJ. 3, e708(2015).
  32. Mjølsnes, R., Arnason, A., Raastad, T., Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 14 (5), 311-317 (2004).
  33. Dyk, N., et al. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study. Am J Sports Med. 44 (7), 1789-1795 (2016).
  34. Steffen, K., et al. Association between lower extremity muscle strength and noncontact ACL injuries. Med Sci Sports Exerc. 48 (11), 2082-2089 (2016).
  35. Sugiura, Y., Saito, T., Sakuraba, K., Sakuma, K., Suzuki, E. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther. 38 (8), 457-464 (2008).
  36. Knapik, J. J., Bauman, C. L., Jones, B. H., Harris, J. M., Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am J Sports Med. 19 (1), 76-81 (1991).
  37. Fowler, N., Reilly, T. Assessment of muscle strength assymetry in soccer players. Contemporary ergonomics. , 327-327 (1993).
  38. Worrell, T. W., Perrin, D. H. Hamstring muscle injury: the influence of strength, flexibility, warm-up, and fatigue. J Orthop Sports Phys Ther. 16 (1), 12-18 (1992).
  39. Hewett, T. E., Stroupe, A. L., Nance, T. A., Noyes, F. R. Plyometric training in female athletes: decreased impact forces and increased hamstring torques. Am J Sports Med. 24 (6), 765-773 (1996).
  40. Hall, S. Basic biomechanics. , McGraw-Hill Higher Education. (2014).
  41. Stastny, P., et al. Hip abductors and thigh muscles strength ratios and their relation to electromyography amplitude during split squat and walking lunge exercises. Acta Gymnica. 45 (2), 51-59 (2015).
  42. Stastny, P., et al. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer's Walk Exercise. J Hum Kinet. 45, 157-165 (2015).
  43. Nicholas, S. J., Tyler, T. F. Adductor muscle strains in sport. Sports Med. 32 (5), 339-344 (2002).
  44. Stastny, P., Tufano, J. J., Golas, A., Petr, M. Strengthening the Gluteus Medius Using Various Bodyweight and Resistance Exercises. Strength Condit J. 38 (3), 91-101 (2016).
  45. Khayambashi, K., Ghoddosi, N., Straub, R. K., Powers, C. M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am J Sports Med. 44 (2), 355-361 (2016).
  46. Cordova, M. L., Ingersoll, C. D., Kovaleski, J. E., Knight, K. L. A comparison of isokinetic and isotonic predictions of a functional task. J Athl Train. 30 (4), 319-322 (1995).
  47. Gentil, P., Del Vecchio, F. B., Paoli, A., Schoenfeld, B. J., Bottaro, M. Isokinetic dynamometry and 1RM tests produce conflicting results for assessing alterations in muscle strength. J Hum Kinet. 56 (1), 19-27 (2017).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

135

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。