JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

提出了一种通过局部表面质子激发将Pd各向异性光沉积到水悬浮Au纳米棒上的协议。

摘要

描述了一种使用表面质子共振(SPR)将Pd沉积光引导到Au纳米棒(AuNR)上的方案。激发质子热电子在SPR辐照驱动还原沉积Pd在胶体AuNR的存在[PdCl4]2-。在目标位置,由质子驱动还原二次金属电位,亚波长沉积与利用外部场(如激光)的质子基板的电场"热点"发生。本文所述过程详细介绍了催化活性贵金属(Pd)从过渡金属卤化盐(H2PdCl 4)到水悬浮各向异性质质结构(AuNR)的溶液相沉积。溶液相过程适用于制造其他双金属结构。对光化学反应的透射紫外线监测,加上位XPS和统计TEM分析,提供即时的实验反馈,以评估双金属结构在光催化反应。在 [PdCl4+2 -存在]时,AuNR的共振质质照射可产生一个薄的共价边界Pd0壳,在此代表性的实验/批次中对其质子行为没有任何显著的阻尼作用。总体而言,质子光沉积为具有5nm以下特征的光电子材料(例如异金属光催化剂或光电互连)的高容量、经济性合成提供了另一种途径。

引言

通过从共振外部场生成的质子热载体引导金属沉积到质子基板上,可以支持在环境条件下两步形成异质金属等向性纳米结构,具有新的自由度1 ,2,3.传统的氧化还原化学、气相沉积和/或电镀方法不适合大批量处理。这主要是由于过量/牺牲试剂废物、低通量 5+ 步光刻工艺以及能源密集型环境(0.01-10 Torr 和/或 400-1000 °C 温度),很少或根本没有直接控制由此产生的材料特性.将质子基质(例如Au纳米粒子/种子)浸入前体环境(例如,水性Pd盐溶液)的照明下,在局部表面质质共振(SPR)下启动外部可调(即场极化和强度)前体通过质子热电子和/或光热梯度3、4的光化学沉积。例如,Au、Cu、Pb 和 Ti 有机金属和 Ge hydrides 在纳米结构 Ag 和 Au 基板上的质子驱动光热分解的协议参数/要求已详细到5、6 7,8,9.然而,利用飞度质子热电子在金属溶液界面上直接光减金属盐,在很大程度上仍未开发,没有采用丁酸盐或聚(乙烯基)配体作为中间电荷的工艺用于直接成核/生长的次级金属2、10、11、12。最近报道了在纵向SPR (LSPR) 激发下Au纳米棒(AuNR)的各向异性Pt装饰,其中Pt分布与偶极极性重合(即,假定的空间分布)热载体)。

本文扩展了近期的Pt-AuNR工作,包括Pd,并突出显示了可实时观测的关键合成指标,表明还原质质光沉积技术适用于其他金属卤化物盐(Ag、Ni、Ir等)。

研究方案

1. Au 纳米棒的分配

注:乙酰甲基溴二铵(CTAB)覆盖的AuNR可由湿化学(步骤1.1)合成,或根据读者喜好进行商业采购(步骤1.2),每种结果均有类似结果。这项工作的结果是基于商业来源的AuNR与五角双晶结构。AuNR种子晶体结构(即单晶与五角双)对次生金属壳最终形态的影响在质质光沉积范围内仍不清楚,但两者一直备受关注。15和类似的光化学12合成。只要 Zeta 电位为正,就可以使用 CTAB 的替代表面活性剂,尽管最终的 Pd 形态可能会发生变化。

  1. 合成技术:利用Nikoobakht等人的银助法,在0.5 mM Au下合成水分散AuNR。16,17(产生单晶结构)或表面活性剂辅助方法由墨菲等人。18,19 (产生五联体晶体结构)。通过离心20、21清洗AuNR,以去除多余的、免费的CTAB,最终浓度为1-10 mM。
  2. 商业来源:以0.5 mM Au购买水性AuNR分散体,规格如下:直径40纳米,LSPR为808nm,在DI水中购买CTAB配体(5 mM浓度)。如果CTAB浓度在接收时超过1-10 mM,通过离心20、21清洗AuNR以去除多余的免费CTAB。
    注: 具有 CTAB 表面活性剂的水性 AuNR 色散物可从许多商业供应商处购买,并在该协议中成功使用。

2. Pd 在 Au 纳米棒上的等离子体光沉积

  1. Pd 前体的准备
    1. 准备 20 mM HCl 解决方案。首先,将830μL的库存浓缩HCl(37%,12 M)与水稀释至100 mL,使0.1M HCl。其次,将 4 mL 的 0.1 M HCl 与水稀释到 20 mL,使 0.02 M HCl。
    2. 移液器 10 mL 的 20 mM HCl 到适当的玻璃器皿中,并放置在水温设置为 60°C 的沐浴声波器中(无声波)。
    3. 将 0.0177 g 的 PdCl2添加到 20 mM HCl 的 10 mL 中,并通过声波混合,直到所有 PdCl2溶解。由此产生的 10 mM H2PdCl4溶液应呈深橙色。
  2. 光沉降反应混合物的制备
    注:所述过程假定在比色皿中使用3 mL总体积,以便实时反馈到质子光沉积过程。选择引用的质量/体积是为了与典型的化学品/材料/试剂相容,同时允许方便洗涤/回收 Pd 装饰的 AuNR。如果采用其他体积和/或替代反应容器(例如玻璃烧杯),预计也会取得类似的结果。
    1. 脱气库存AuNR溶液和甲醇(MeOH)在沐浴声波器30分钟。
    2. 移液器 2.5 mL 的水悬浮 AuNR(从步骤 2.2.1) 到 1 厘米路径长度,宏体积比色皿与磁性搅拌棒。将比色皿放在搅拌盘上。
      注: 宏体积比色皿的典型体积为 3.5 mL。石英可以用UV透明塑料代替。
    3. 移液器 475 μL 脱气 MeOH(从步骤 2.2.1)放入比色皿中,同时轻轻搅拌约 15-30 分钟。 根据需要,通过轻轻敲击比色皿底部,将任何气泡轻轻敲击到刚性表面;去除溶剂气体可以延长金属卤化物盐的稳定性。
    4. 移液器 5 μL 的库存浓缩 HCl (37%, 12 M) 到比色皿中,让混合 15 分钟。
      注:调整HCl支持的浓度可能会影响Pd沉积的最终形态/速率,但反应混合物中浓度小于20 mM将允许H2 PdCl4逐步水解和氧化剂,导致最终的PdOx形成后 ±3 h.
  3. [PdCl4]2-到 AuNR1,13的质子光还原
    1. 将 25 μL 的 10 mM H2PdCl4注入反应混合物中,以 1:5 Pd:Au 原子比。让溶液在黑暗中复合1小时,同时搅拌。
      注:此数量可根据所需的 Pd:Au 比率进行调整,作为改变 Au、[PdCl4+ 2-、HCl和反应混合物的 MeOH]的最终摩尔率的费用。参考22说明了不同 Pt:Au 比率的 Pt-AuNR 形态示例 - 与 Pd 类似的结果可以预期。
    2. 以 35 mW/cm 2 强度在 35 mW/cm2强度下,用非极化、715 nm 长通过滤钨卤素灯照射反应混合物,以 24 小时。
      注:不同的滤光片(或光源,如激光)可根据不同Au纳米结构种子的独特LSPR波长进行选择。例如,420 nm 长通滤波器可用于在 450 nm 处显示 LSPR 的质子种子结构。通过中性密度过滤,光强度可能会降低,但速度较慢 [PdCl4]2 -降低率,导致总反应时间较长。光强度可以增加,以减少反应时间,但代价是[PdCl4]2-的热降低潜力(通过参考23,开始温度为 ±360 °C )。通过单独计算纳米粒子表面温度和/或集体组合24,可以先验地计算适当的强度,以减轻热还原。不同辐照强度对最终Pd-AuNR形态的影响尚未探讨。
    3. 从 Pd-AuNR 中清洗残留的化学品/试剂两次,每次通过:在 9,000 x g下离,用移液器去除上清液,在水中重新悬浮 Pd-AuNR 颗粒,并将小瓶浸入浴缸声波器中 1-2 分钟到分散20,21。

结果

在黑暗和共振辐照下,在H2PdCl4存在/不存在的情况下,为CTAB覆盖的AuNR采集了透外光谱、X射线光电子光谱(XPS)数据和传输电子显微镜(TEM)图像在其纵向SPR(LSPR)中催化Pd的成核/生长。图1图2中的透射UV-vis光谱根据以下变化提供了对反应动力学的见解:(a)前体配体-金属电荷转移(LMCT)特征强度和波长以及 (b) 纳米棒 SPR 强度、最大半宽 (FWHM) 和波长...

讨论

使用透射UV-vis光谱监测光学吸收的变化有助于评估光催化反应的状态,特别注意H2 PdCl4的LMCT特性。在步骤 2.3.1 中注入 H2PdCl4后 LMCT 功能的波长最大值(图 1中从纯黑色到纯蓝色)提供了对 [PdCl4+2 分子1 (例如,与N+ CTAB头组进行静电协调,然后输送到AuNR表面1和/或相应的水解和/或氧化31、32、...

披露声明

作者没有什么可透露的。

致谢

这项工作由陆军研究实验室赞助,根据美国陆军实验室的合作协议号W911NF_17_2_0057授予G.T.F.本文件所载的观点和结论是作者的观点和结论,不应被解释为代表陆军研究实验室或美国政府的明示或暗示的官方政策。美国政府有权复制和分发用于政府目的的重印,尽管此处有版权说明。

材料

NameCompanyCatalog NumberComments
Aspheric Condenser Lens w/ DiffuserThorlabsACL5040U-DG15f=40 mm, NA=0.60, 1500 grit, uncoated
Deuterium + Tungsten-Halogen LightsourceStellarNetSL5
Gold Nanorods, AuNRNanoPartzA12-40-808-CTABCTAB surfactant, 808 nm LSPR, 40 nm diameter
Ground Glass DiffuserThorlabsDG20-15001500 grit, N-BK7
Hydrochloric acid, HClJ.T. Baker9539-03concentrated, 37%
Low Profile Magnetic StirrerVWR10153-690
Macro Disposable Cuvettes, UV PlasticFireFlySci1PUV10 mm path length
Methanol, MeOHJ.T. Baker9073-05≥99.9%
Palladium (II) chloride, PdCl2Sigma Aldrich520659≥99.9%
Plano-Convex LensThorlabsLA1145f=75 mm, N-BK7, uncoated
Quartz Tungsten-Halogen LampThorlabsQTH10
UV-vis SpectrometerAvantesULS2048L-USB2-UA-RSAvaSpec-ULS2048L

参考文献

  1. Forcherio, G. T. Targeted deposition of platinum onto gold nanorods by plasmonic hot electrons. Journal of Physical Chemistry C. 122 (50), 28901-28909 (2018).
  2. Langille, M. R., Personick, M. L., Mirkin, C. A. Plasmon-Mediated Syntheses of Metallic Nanostructures. Angewandte Chemie International Edition. 52 (52), 13910-13940 (2013).
  3. Qiu, J., Wei, W. D. Surface Plasmon-Mediated Photothermal Chemistry. The Journal of Physical Chemistry C. 118 (36), 20735-20749 (2014).
  4. Zhang, Y. Surface-Plasmon-Driven Hot Electron Photochemistry. Chemical Reviews. 118 (6), 2927-2954 (2018).
  5. Qiu, J., Wu, Y. C., Wang, Y. C., Engelhard, M. H., McElwee-White, L., Wei, W. D. Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface at Room Temperature. Journal of the American Chemical Society. 135 (1), 38-41 (2013).
  6. Qiu, J. Surface Plasmon-Mediated Chemical Solution Deposition of Cu Nanoparticle Films. The Journal of Physical Chemistry C. 120 (37), 20775-20780 (2016).
  7. Boyd, D. A., Greengard, L., Brongersma, M., El-Naggar, M. Y., Goodwin, D. G. Plasmon-Assisted Chemical Vapor Deposition. Nano Letters. 6 (11), 2592-2597 (2006).
  8. Di Martino, G., Michaelis, F. B., Salmon, A. R., Hofmann, S., Baumberg, J. J. Controlling Nanowire Growth by Light. Nano Letters. 15 (11), 7452-7457 (2015).
  9. Di Martino, G., Turek, V. A., Braeuninger-Weimer, P., Hofmann, S., Baumberg, J. J. Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions. Applied Physics Letters. 110 (7), 071111 (2017).
  10. Xue, C., Millstone, J. E., Li, S., Mirkin, C. A. Plasmon-Driven Synthesis of Triangular Core–Shell Nanoprisms from Gold Seeds. Angewandte Chemie International Edition. 46 (44), 8436-8439 (2007).
  11. Langille, M. R., Zhang, J., Mirkin, C. A. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angewandte Chemie International Edition. 50 (15), 3543-3547 (2011).
  12. Zhai, Y. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nature Materials. 15 (8), 889-895 (2016).
  13. Forcherio, G. T., Baker, D. R., Boltersdorf, J., McClure, J. P., Leff, A. C., Lundgren, C. A. Directed assembly of bimetallic nanoarchitectures by interfacial photocatalysis with plasmonic hot electrons. Nanophotonic Materials XV. 10720, 107200K (2018).
  14. Tebbe, M. Silver-Overgrowth-Induced Changes in Intrinsic Optical Properties of Gold Nanorods: From Noninvasive Monitoring of Growth Kinetics to Tailoring Internal Mirror Charges. The Journal of Physical Chemistry C. 119 (17), 9513-9523 (2015).
  15. Mayer, M. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters. 15 (8), 5427-5437 (2015).
  16. Nikoobakht, B., El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials. 15 (10), 1957-1962 (2003).
  17. Burrows, N. D., Harvey, S., Idesis, F. A., Murphy, C. J. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments. Langmuir. 33 (8), 1891-1907 (2017).
  18. Jana, N. R., Gearheart, L., Murphy, C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials. 13, 1389-1393 (2001).
  19. Kumar, D., Lee, A. R., Kaur, S., Lim, D. K. Visible-light Induced Reduction of Graphene Oxide Using Plasmonic Nanoparticle. Journal of Visualized Experiments. 103, e53108 (2015).
  20. Paviolo, C., McArthur, S. L., Stoddart, P. R. Gold Nanorod-assisted Optical Stimulation of Neuronal Cells. Journal of Visualized Experiments. (98), e52566 (2015).
  21. Hoang, T. B., Huang, J., Mikkelsen, M. H. Colloidal Synthesis of Nanopatch Antennas for Applications in Plasmonics and Nanophotonics. Journal of Visualized Experiments. (111), e53876 (2016).
  22. Ortiz, N. Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs. ACS Applied Materials & Interfaces. 9 (31), 25962-25969 (2017).
  23. Schiavo, L., Aversa, L., Tatti, R., Verucchi, R., Carotenuto, G. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2− Ions. Journal of Analytical Methods in Chemistry. 2016, 9073594 (2016).
  24. Baffou, G., Quidant, R., García de Abajo, F. J. Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano. 4 (2), 709-716 (2010).
  25. Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 12 (3), 788-800 (1996).
  26. Elding, L. I., Olsson, L. F. Electronic absorption spectra of square-planar chloro-aqua and bromo-aqua complexes of palladium(II) and platinum(II). The Journal of Physical Chemistry. 82 (1), 69-74 (1978).
  27. Swihart, D. L., Mason, W. R. Electronic spectra of octahedral platinum (IV) complexes. Inorganic Chemistry. 9 (7), 1749-1757 (1970).
  28. Forcherio, G. T., Dunklin, J. R., Backes, C., Vaynzof, Y., Benamara, M., Roper, D. K. Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping. AIP Advances. 7 (7), 075103 (2017).
  29. Boltersdorf, J., Forcherio, G. T., McClure, J. P., Baker, D. R., Leff, A. C., Lundgren, C. Visible Light-Promoted Plasmon Resonance to Induce “Hot” Hole Transfer and Photothermal Conversion for Catalytic Oxidation. The Journal of Physical Chemistry C. 122 (50), 28934-28948 (2018).
  30. da Silva, J. A., Meneghetti, R. M. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations. Langmuir. 34 (1), 366-375 (2018).
  31. Teranishi, T., Miyake, M. Size Control of Palladium Nanoparticles and Their Crystal Structures. Chemistry of Materials. 10 (2), 594-600 (1998).
  32. Straney, P. J., Marbella, L. E., Andolina, C. M., Nuhfer, N. T., Millstone, J. E. Decoupling Mechanisms of Platinum Deposition on Colloidal Gold Nanoparticle Substrates. Journal of the American Chemical Society. 136 (22), 7873-7876 (2014).
  33. Cheng, N., Lv, H., Wang, W., Mu, S., Pan, M., Marken, F. An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation. Journal of Power Sources. 195 (21), 7246-7249 (2010).
  34. Grzelczak, M., Perez-Juste, J., Garcia de Abajo, F. J., Liz-Marzan, L. M. Optical Properties of Platinum-Coated Gold Nanorods. The Journal of Physical Chemistry C. 111 (17), 6183-6188 (2007).
  35. Zheng, Z., Tachikawa, T., Majima, T. Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region. Journal of the American Chemical Society. 136 (19), 6870-6873 (2014).
  36. Zheng, Z., Tachikawa, T., Majima, T. Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd–Au Nanorods Studied at the Single-Particle Level. Journal of the American Chemical Society. 137 (2), 948-957 (2015).
  37. Grzelczak, M., Pérez-Juste, J., Rodríguez-González, B., Liz-Marzán, L. M. Influence of silver ions on the growth mode of platinum on gold nanorods. Journal of Materials Chemistry. 16 (40), 3946-3951 (2006).
  38. Joplin, A. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. ACS Nano. 11 (12), 12346-12357 (2017).
  39. Sutter, P., Li, Y., Argyropoulos, C., Sutter, E. In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis. Journal of the American Chemical Society. 139 (19), 6771-6776 (2017).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

150Au Pd

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。