Method Article
微观系统的物理建模有助于获得难以通过其他方式获得的见解。为了促进物理分子模型的构建,我们演示了如何使用 3D 打印来组合功能宏观模型,以触觉方式捕获分子系统质量。
随着 3D 打印的可访问性的增长,在化学实验室和化学教育中对增材制造工艺的应用和兴趣也越来越大。基于分子系统物理建模的悠久而成功的历史,我们提出了精选模型以及一个协议,以促进分子结构的 3D 打印,这些结构能够完成的不仅仅是表示形状和连接性。如前所述组装的模型将动态方面和自由度合并到饱和碳氢化合物结构中。作为一个代表性的例子,环氧烷是由使用不同热塑性塑料印刷和完成的零件组装的,由此产生的模型保留了其在各种尺度上的功能。生成的结构显示与计算和文献一致的配置空间可访问性,这些结构的版本可用作说明难以用其他方式传达的概念的辅助工具。本练习使我们能够评估成功的打印方案,为装配提出实用建议,并概述分子系统物理建模的设计原则。所提供的结构、程序和结果为个人制造和探索分子结构和动态与3D打印提供了基础。
分子结构构建长期以来一直是发现和验证我们对分子形状和相互作用的理解的一个关键方面。物理模型构建是保林等人在蛋白质,中确定β-螺旋结构的一个激励方面,水2、3的主要层合水体结构以及沃森和克里克4的DNA双螺旋结构。在詹姆斯·沃森(James Watson)发表的DNA结构说明中,他详细介绍了这种模型建筑所面临的许多困难,如用铜线缠绕模型碳原子,制造磷原子,在机器车间5的锡切口上,在碱基上做纸板切口。模型构建中的这种斗争在很大程度上通过计算建模来增强或完全取代物理方法得到补救,尽管物理模型仍然是化学教育和实验,,6、7、8、9中的6,一个重要方面。8
自 2010 年左右以来,3D 打印作为创意设计和制造工具的采用率显著增长。这种增长是由一系列专注于技术广泛商业化的新公司的各种融合沉积建模 (FDM) 打印机的竞争和可用性推动的。随着可及性增加,这些技术在化学教育和实验实验室的应用也不断增加,包括10、11、12、13、14、15、16、17、18、19、20、21。,11,12,13,14,15,16,17,18,19,20,21在此期间,3D 模型的商业和开放社区存储库(如 NIH 3D 打印 Exchange22)使 3D 打印模型系统更易于访问,尽管其中许多模型往往以特定目标分子为中心,并提供简单的静态结构,强调键连接和类型。更通用的原子和分子组可以实现更具创造性的结构12,23,,23并且需要模型,使一般结构创建与触觉,动态和力敏感反馈的分子结构。
在这里,我们介绍分子模型结构组件,这些成分可以方便地打印和组装,形成饱和烃的动态分子模型。组件结构是我们为实验室和大学推广和推广活动而开发的更广套件的一部分。所提供的零件经过精心设计,可与各种聚合物灯丝类型在商品 FDM 3D 打印机上打印。我们用单挤出机和双挤出机FDM打印机的不同聚合物和精加工技术呈现模型结果。这些组件是可扩展的,使模型制造适合在更大的讲座环境中进行个人调查和演示。
本报告的主要目的是帮助其他研究人员和教育工作者通过3D打印以更物理的方式翻译化学结构细节和知识。为此,我们通过不同比例的组装和操作环氧烷来突出一个示例应用。六成员环系统构象,是有机化学入门课程24的核心主题,这些构象是环和糖结构25、26、27,26反应的一个因素。印刷模型灵活采用钥匙环符合器24,可直接探索和手工定性评价环间通路所需的力。
1. 为3D打印准备模型文件
注:大量的3D打印机和免费和商业性印刷软件使准确的方向超出了本文的范围。此处提供了一般协议流程和建议,对列出的软件和 3D 打印机显示的代表性模型提供了具体注意事项( 参见材料表)。特定于读卡器打印机和切片软件组合的专用制造商说明优先于提供的建议。
图1:颜色为一体原子或键可以打印为数组。为了以轻微的质量成本提高打印效率,在阵列中很容易打印出颜色相同部分。在这里,六个PLA碳原子被打印在一起,每个原子都位于一个小木筏结构上,有一个轮廓边缘结构。 请单击此处查看此图的较大版本。
2. 打印机的打印机打印零件
3. 模型结构的精加工和装配
注意:丙酮是易燃的,应谨慎应用在烟气罩或通风良好的区域。ABS 溶解在丙酮中,因此由于退火不良而存在层分离缺陷的零件不应使用液体丙酮进行处理。丙酮将通过这些缺陷进入模型并溶解模型填充(图3C)。使用丙酮蒸汽抛光是一个较慢的过程,将导致类似的效果,但考虑到丙酮的易燃性,应采取安全预防措施。
图 2:双挤出机打印可以在视觉上更加精细。(A) 双挤出机模型氢原子打印在视觉上比 (B) 所有白色模型氢原子打印更具有凝聚力.(C) 当连接在一起形成完整的环环时,组装的PLA模型在功能上是相同的。 请单击此处查看此图的较大版本。
图 3:ABS 模型可以进行化学处理,以进行光泽表面处理。(A) ABS模型打印往往具有更漫射或哑光的外观,但 (B) 在化学处理零件后,在丙酮中短暂浸入,它们获得高光泽度。(C) 如果丙酮通过层分离缺陷进入打印的内部,丙酮将从内到外溶解模型,导致其崩溃。 请单击此处查看此图的较大版本。
所提供的协议涵盖了交互式分子模型构建的各种潜在选项。作为使用这些模型部件的分子组装的基本统一示例,我们选择在各种尺度上组装交互式环氧烷结构。 图 2 显示了此结构所需的部分:6 个 C 原子、6 个 C-C 键和 12 个 H 原子。这些特定的印刷品是使用材料表中列出的两 种打印机制作的。成本更高的双挤出机打印机能够生产双色组件;这里的双色氢原子结构与颜色变化在键的中点(图2A)。图 2B 中的单色氢气打印时间比 50\u201260% 少大约 50+u201260%,因为缺少渗出屏蔽结构,在有源挤出机之间切换时缺少聚合物缩回。组装的环氧烷结构(图2C)在功能上是等价的,尽管双挤出机打印看起来要适度的精炼。
图 2 中的 PLA 模型具有相当漂亮的表面处理,比直接从打印机上关闭的 ABS 模型更精细(图 3A)。使用丙酮对 ABS 模型进行化学处理,使表面表面几乎具有光滑和高光泽度(图3B)。这种精加工可能会很麻烦,特别是当 ABS 型号没有退火好的时候。使用 ABS 打印的大型型号容易出现层分离缺陷。在挤出机可以遍历以放下下一层之前,当上一层冷却时,会发生层分离缺陷。对于大型 ABS 打印机来说,打印机加热床周围的环境保持在均匀和温暖的温度以降低冷却速度至关重要。如果具有层缺陷的打印浸入丙酮中,丙酮将进入模型并溶解内部支撑结构。这将从内部折叠模型,如图 3C 所示。
视觉上独特的外观是模型结构功能的次要外观。连接器设计用于围绕单个键进行自由旋转。为了测试它们在不同系统中的实用性,打印了四套不同的零件尺寸,碳原子直径从 17.5 毫米、35 毫米、70 毫米和 112 毫米运行。组装的环氧烷结构(图4)都能够以同样的方式弯曲、扭曲和采用相关的符合性。这些型号中最小的是最容易打印缺陷的,因此此尺寸可能太小,不建议在不调整零件的相对尺寸的情况下使用。小型打印的主要优点之一是打印速度。2 小时左右打印的 6 个最小碳原子阵列,而最大尺寸的单个碳原子需要 10 小时。虽然打印速度慢,但大型模型在讲课环境中可能更有效,因为很难从远处看到小结构的运动。
图4:模型在各种尺度上工作。为了说明如何为不同目的打印模型,环氧烷模型以四种不同的比例组装,并且都保留了相同的功能。最大的碳原子比垒球大(直径112毫米),而最小的组装环氧烷可以装在垒球中。 请单击此处查看此图的较大版本。
动态方面是将这些结构与其他可打印分子模型分离的关键属性之一。由于原子可以容易地相对旋转,因此结构可以被扭曲,捕捉到环氧烷的不同代表性构象体中。图 5显示了它们各自的配置空间之间的转换的椅子、船和转换状态结构。此过渡状态点在近平面几何体 24、28,中具有四个标记碳原子,与执行 B3LYP/6-311+G(2d,p)计算相同的过渡状态结构 29。遵循相同的过渡状态假想频率运动,稍微扭曲2向上和3向下将捕捉模型到船符合景观,而稍微扭曲2向下和3向上将返回结构到椅子符合。
图5:环氧烷的一致性完全可访问。由于原子可以围绕它们的键旋转,模型可以采用符号锁定的椅子和更符合性的自由船的形式。这些形式之间的过渡状态涉及环中的四个几乎共平面碳原子。轻轻扭 2 与 3 向下将滑动模型到船符合器, 而扭曲 2 向下与 3 向上将返回模型到椅子符合。 请单击此处查看此图的较大版本。
状态点自由能量估计 (补充表 S1) 从 B3LYP/6-311+G(2d,p) 计算的优化状态点 (补充文件 S6+u2012S9)给出扭曲船和船符合 0.8 kcal/mol 之间的间隙,非常接近热能在 298.15 K。这表明,它们之间的转换应该几乎自由采样。椅子构象器与转换转换状态之间的间隙是此值的十倍以上,表明在比较中应将椅子与转换转换状态锁定。图6显示了这一点,它显示了在气相分子动力学计算30、31,31过程中,当每个碳原子位置相对于环平面的相对时,估计的平均顺应能量。在左侧的座椅上,当碳原子在环形平面上方或下方移位时,能量较低,但如果它们取代以与环形平面对齐,能量会急剧上升。在船的顺应状态中,当碳处于环平面(扭曲船状态)时,顺应能量相对较低,而更高度置换的船构器的能量不是高能量。这些配置景观可以探索与3D打印环氧烷模型,与椅子符合人只能本地振动,而船符合者可以顺利地从一对相反的碳原子到下一个。
图 6:模型行为匹配计算。在椅子和船的一致性状态中,在分子动力学计算过程中,碳原子的纬度位移可以投影到封闭球体的表面。虽然椅子形式最稳定,但它被锁定,只能通过高能量转换状态与倒置形式进行转换。计算和打印模型的灵活性都表明,船和扭曲船在298.15 K时以接近1 kBT 分隔,允许这种形式的碳原子几乎自由的纬度位移。 请单击此处查看此图的较大版本。
补充表S1:状态点自由能量估算。请点击这里下载此表。
补充文件 1.请点击这里下载此文件。
补充文件2。请点击这里下载此文件。
补充文件3。请点击这里下载此文件。
补充文件 4.请点击这里下载此文件。
补充文件5.请点击这里下载此文件。
补充文件6.请点击这里下载此文件。
补充文件7.请点击这里下载此文件。
补充文件8。请点击这里下载此文件。
补充文件9.请点击这里下载此文件。
本研究的主要目的是报告使用商品3D打印机制作动态分子模型的协议。这些打印机越来越方便,甚至经常免费在图书馆、学校和其他场所使用。入门涉及选择要打印的模型和要使用的材料,并据这些选项决定可能需要一些灵感,说明创意添加剂制造可以做什么研究和指导。为了解决这些问题,我们提供了一些实用的材料建议、建议的模型部件、3D 打印协议和示例应用程序,每个建议都值得进一步讨论。
热塑性塑料有许多用于 3D 打印的选择。我们在介绍的协议中重点介绍了三种材料,因为这三种材料是目前最广泛使用的 3D 打印材料。选择可能取决于可用的 3D 打印机支持的材料,例如,由于环境限制,许多开放访问设施只会使用 PLA 打印。PLA 是一种可生物降解和可堆肥的材料,具有具有温和温度设置的打印协议。ABS 和 PETG 都不太环保,一般不可回收,尽管 PETG 基于高度可回收的聚乙烯四邻苯二甲酸酯 (PET),最终可能会看到像 PET 一样更广泛的后处理。可持续的印刷方法将涉及一次打印几个零件,以确保打印质量和打印成功,这同时尽可能少地使用废弃的材料(支撑结构、木筏、渗出屏蔽等)。PLA 可以是脆的,因此,如果可用,ABS 和 PETG 热塑性塑料可分别产生具有更强机械弹性且具有改进层粘附性打印件。这些特性对于交互式分子模型是可取的,该模型将在实验室或教室环境中定期操作。
此处介绍的模型考虑了这些考虑因素,尽管它们最初是经过设计,能够协同工作,实现动态分子模型构建。在默认尺度上,它们将成功地组装成交互式分子结构。它们可以很容易地扩展到大型型号,但装配需要更大的力,因为连接爪在较大尺寸下不太容易变形。在收缩组件时,尺寸减少 50% 仍会稍作修改,例如将碳原子模型缩小到 48+u201249%,同时将键和氢原子保持 50%,以实现 PLA 打印件中部件之间的更紧密连接。这种小模型更精细,往往需要木筏结构才能成功打印,但它们仍然作为动态分子模型发挥作用。
热塑性材料和所选的打印型号是 3D 打印协议的两个最关键方面。所选的热塑性塑料将决定温度、粘附性、退火和精加工注意事项和选项。如果可用的 3D 打印机没有加热床,PLA 是唯一能够重现打印零件的热塑性塑料选择。虽然提供的部件设计为可重复打印与不同的热塑性塑料,并坚持动态操作,打印将下降使用和裂纹,往往在打印层之间,当放置在增加的压力。在这种情况下,打印更换部件非常简单且相对经济高效。
从提供的模型打印的分子组件的动态功能使此工作与其他主要突出连接和粘合类型的可用和 3D 可打印模型区分开来。动态方面以循环烷结构为例,使用这些模型可直接访问环氧烷的配置景观,这些景观的拓扑与计算调查一致。这主要源于对分子几何学细节的尊重,这些物理建模组件中的自由度。在利纳斯·保林关于他们成功地发现 α-螺旋1的结构的评论中,他们声称他们的同代人面临着来自理想主义整体假设和采用"...只是粗略地接近对结合的阿米德组原子间距离、粘结角度和平面性的要求,正如我们对简单物质的调查所给出的。与构建这些模型部分时考虑的考虑因素,这些模型和建议需要更具体的定量洞察,为分子系统的一般交互物理研究奠定了基础。这些模型是我们在本报告发布前几年来为研究和外联活动生产的 3D 可打印模型套件的扩展,作者提供了与这些模型和所述协议兼容的其他组件,以实现更加多样化的结合安排和动态操作。
作者没有什么可透露的。
这项工作得到了国家科学基金会(NSF)在赠款第1号的资助下的支持。CHE-1847583.
Name | Company | Catalog Number | Comments |
ABS: Black 1.75 mm filament spool, 1 kg | MakerBot | MP01969 | Obtained from reseller (B&H and/or Amazon). |
ABS: Dark Gray 1.75 mm filament spool, 1 kg | Amazon | B07T6W8TRF | Obtained from reseller (B&H and/or Amazon). |
ABS: White 1.75 mm filament spool, 1 kg | Hatchbox | B00J0H6NNM | Obtained from reseller (B&H and/or Amazon). |
Crown Acetone, 1 Gallon | Crown | 206539 | Obtained from a hardwares store (Lowes). |
MakerGear M2 | MakerGear | This printer is more costly than inexpensive FDM printers obtainable on Amazon or other sites, but it is engineered for more consistent performance. | |
MakerGear M2 Dual | MakerGear | This model printer is no longer available for purchase. It has been replaced with a new model that has independent dual extruders. | |
Multi-Surface 1.88-in Painters Tape | 3M | 116480 | Obtained from a hardwares store (Lowes). |
PETG: Pink 1.75 mm filament spool, 1 kg | Amazon | Obtained from reseller (B&H and/or Amazon). No longer available from this company. | |
PETG: White 1.75 mm filament spool, 1 kg | Amazon | Obtained from reseller (B&H and/or Amazon). No longer available from this company. | |
PLA: Black 1.75 mm filament spool, 2 lb | MakerBot | MP05775 | Obtained from reseller (B&H and/or Amazon). |
PLA: Cool Gray 1.75 mm filament spool, 2 lb | MakerBot | MP05784 | Obtained from reseller (B&H and/or Amazon). |
PLA: White 1.75 mm filament spool, 2 lb | MakerBot | MP05780 | Obtained from reseller (B&H and/or Amazon). |
POLYIMIDE TAPE (2" ROLL) | MakerGear | Provided with the printer from MakerGear, though obtainable from a variety of sources. | |
Simplify3D | Simplify3D | Slicer softward used in prints. This software can be purchased from the company, or it can be purchased from MakerGear and other 3D printer makers. |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。