登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

我们报告了锰铁氧体簇(MFC)的一锅水热合成,可对材料尺寸和成分进行独立控制。磁分离允许快速纯化,而使用磺化聚合物的表面功能化可确保材料在生物相关介质中不聚集。由此产生的产品非常适合生物医学应用。

摘要

锰铁氧体簇(MFC)是数十至数百个初级纳米晶体的球形组件,其磁性在各种应用中都很有价值。在这里,我们描述了如何在水热工艺中形成这些材料,该过程允许独立控制产品簇尺寸(从30到120nm)和所得材料的锰含量。酒精反应介质中加入的水总量和锰与铁前驱体的比例等参数是实现多种类型的MFC纳米级产品的重要因素。快速纯化方法使用磁分离来回收材料,使磁性纳米材料的克数生产非常有效。我们克服了磁性纳米材料聚集的挑战,将高电荷的磺酸盐聚合物应用于这些纳米材料的表面,产生胶体稳定的MFC,即使在高盐度环境中也保持非聚集性。这些非聚集、均匀和可调的材料是生物医学和环境应用的优秀前瞻性材料。

引言

与纯氧化铁相比,在适当的条件下,在氧化铁晶格中加入锰作为掺杂剂可以增加材料在高外加磁场下的磁化。因此,锰铁氧体(MnxFe3-xO4)纳米颗粒由于其高饱和磁化,对外部磁场的强烈响应和低细胞毒性而成为非常理想的磁性纳米材料12345。单域纳米晶体以及这些纳米晶体的簇(称为多域粒子)已在各种生物医学应用中进行了研究,包括药物递送,用于癌症治疗的磁热疗和磁共振成像(MRI)678。例如,Hyeon小组在2017年使用单结构域锰铁氧体纳米颗粒作为Fenton催化剂来诱导癌症缺氧,并利用该材料的T2contrast进行MRI跟踪9。令人惊讶的是,鉴于这些和其他对铁氧体材料的积极研究,与纯氧化铁(Fe3O4)纳米材料相比,几乎没有体内演示,也没有报道在人类中的应用910

将铁氧体纳米材料的特征转化为临床时面临的一个巨大挑战是产生均匀的、非聚集的纳米级簇11121314。虽然传统的单域纳米晶体合成方法已经发展良好,但这项工作中感兴趣的多域簇不容易以统一和受控的方式生产1516。此外,铁氧体组成通常是非化学计量的,并且不仅仅与前驱体的起始浓度相关,这可能进一步模糊这些材料的系统结构功能表征9121317。在这里,我们通过展示一种合成方法来解决这些问题,该方法可以对锰铁氧体纳米材料的簇尺寸和组成进行独立控制。

这项工作也为克服铁氧体纳米材料的胶体稳定性差提供了一种手段181920。磁性纳米颗粒通常由于强烈的颗粒 - 颗粒吸引力而容易聚集;铁氧体受这个问题的影响更大,因为它们较大的净磁化放大了粒子聚集。在相关的生物介质中,这些材料产生足够大的聚集体,使材料迅速收集,从而限制了它们与动物或人的接触途径202122。Hilt等人在研究磁热加热和染料降解时发现了颗粒- 颗粒聚集的另一个后果23。在颗粒浓度略高或暴露于场中的时间增加时,随着材料随着时间的推移而聚集并且活性颗粒表面积减小,材料的有效性降低。这些应用和其他应用将受益于簇表面,这些表面旨在提供空间位阻,排除粒子 - 粒子相互作用2425

在这里,我们报告了一种合成方法,用于合成具有可控尺寸和成分的锰铁氧体簇(MFC)。这些多域颗粒由硬聚集的初级锰铁氧体纳米晶体的组装组成;初级纳米晶体的紧密结合增强了它们的磁性,并提供了50-300 nm的整体簇尺寸,与纳米医学的最佳尺寸很好地匹配。通过改变水和氯化锰前体的量,我们可以独立控制整体直径和成分。该方法利用简单有效的一锅水热反应,允许频繁的实验和材料优化。这些MFC可以很容易地纯化成浓缩的产品溶液,通过赋予胶体稳定性的磺化聚合物进一步修饰。它们的可调性、均匀性和溶液相稳定性都是纳米材料在生物医学和环境工程中的应用具有重要价值的特点。

研究方案

1. 控制中间商联总直径和铁氧体组成的中间商联苯合成

  1. 清洗并彻底干燥所有用于合成的玻璃器皿。合成中的水量会影响MFC的尺寸,因此确保玻璃器皿中没有残留水至关重要1626
    1. 要清洗玻璃器皿,请用水和洗涤剂冲洗,并用烧瓶刷擦洗以清除碎屑。彻底冲洗以除去所有洗涤剂,然后用去离子水冲洗完毕。
    2. 要干燥玻璃器皿,请摇动玻璃器皿表面的水滴,然后放入60°C的烤箱中直至完全干燥。
    3. 用37%盐酸冲洗聚苯搪(PPL)反应器,以除去以前使用中的任何碎屑。为此,将反应器及其盖子放在一个大烧杯中,并充满盐酸,直到反应器完全淹没。让它静置30分钟,然后倒出盐酸。用水连续冲洗装有反应器的烧杯1-2分钟,然后将反应器放入烤箱中晾干。
  2. 使用自动移液器将 20 mL 乙二醇转移到带有磁性搅拌棒的 50 mL 烧杯中。
  3. 称出所需量的氯化铁(FECl3·6H2 O,固体)以达到1.3mM的最终浓度,并将其加入烧杯中。将烧杯放在搅拌盘上,以480 rpm的速度打开,开始连续搅拌烧杯。
    注意:由于这是水合物,因此必须快速测量和添加,以避免从环境空气中意外吸收水分。
  4. 称取250mg聚丙烯酸(PAA,Mw〜6,000,粉末)并将其加入烧杯中。加入PAA后,溶液变得不透明,颜色略浅。
  5. 称取1.2克尿素(CO(NH22,粉末),并将其添加到烧杯中。
  6. 使用移液器,将0.7 mM氯化锰(MnCl2·6H2O aq,3.5 M,0.2 mL)加入烧杯中。
  7. 最后,使用移液器将所需量(0.5 mL)的超纯水加入烧杯中。
  8. 让溶液搅拌30分钟,注意颜色变化。它将呈现为半透明的深橙色。
  9. 将反应混合物转移到聚苯搪(PPL)反应器中。请注意,在溶液搅拌后,一些固体可能积聚在烧杯的侧面。
    1. 使用磁铁(立方永久稀土磁铁,40 x 40 x 20 mm,以下称为所有分离和磁性收集程序的"磁铁")将搅拌棒拖到烧杯壁周围,以确保积聚在侧面的任何固体分散到反应溶液中。
    2. 一旦溶液混合并准备就绪,将其转移到50 mL PPL衬里反应器中。
    3. 使用夹具和杠杆将反应器尽可能紧密地密封在不锈钢高压釜中。将反应器容器夹在稳定的表面上,并使用插入盖子的杆作为杠杆,推动反应器密封。请注意,密封的反应器不应能够用手打开。这一点至关重要,因为烘箱的高压环境要求在反应器上密封。
  10. 将反应器放入烘箱中,在215°C下20小时。
  11. 水热反应完成后,将反应器从烘箱中取出,使其冷却至室温。烤箱的压力将使反应器能够用手打开。请注意,此时,反应器中将含有分散在乙二醇中的MFC产物与其它杂质,例如未反应的聚合物,并且会是不透明的黑色溶液。产品将在以下步骤中被隔离。

2. 磁粉的磁选和纯化

  1. 将200毫克钢丝球放入玻璃瓶中。用来自反应器的反应混合物中途填充玻璃小瓶。用丙酮填充小瓶的其余部分并摇匀。请注意,钢丝球增加了小瓶中的磁场强度,并有助于纳米团簇与溶液的磁性分离。
  2. 将小瓶放在磁铁上以进行磁性收集。结果将是底部有沉淀物的半透明溶液。
    1. 倾倒上清液,而MFC通过在浇注时将磁铁固定在小瓶底部来磁性捕获钢丝球。乙二醇将在此步骤中大部分被除去。
    2. 开始用低丙酮与水的比例洗涤,并在随后的洗涤中增加该比例,直到纯净。这样做3-4次。
  3. 从磁铁上取下小瓶并装满水。摇匀以溶解MFC。现在产品将完全分散在水中。
  4. 重复前两个步骤几次,直到MFC的水溶液在摇动时不产生气泡。结果将是一个黑暗的,不透明的铁磁流体,它将对磁铁产生强烈的反应。
    注意:在用20mL乙二醇的典型合成中,将获得约80mg的MFC产物。

3. 多功能一体机的表面功能化,实现超高胶体稳定性

注意:硝基多巴胺和聚(AA-co-AMPS-co-PEG)的合成可以在我们之前的工作中找到16。共聚物是通过自由基聚合制成的。在10毫升N,N-二甲基甲酰胺(DMF)中加入0.20克2,2′-偶氮二(2-甲基丙腈)(AIBN),0.25克丙烯酸(AA),0.75克2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)和1.00克聚乙二醇甲基醚丙烯酸酯(PEG)。在70°C水浴中加热混合物1小时,然后将其转移到水中的透析袋(纤维素膜,3 kDa)。AA、AMPS 和 PEG 的重量比为 1:3:4。这些单体的聚合具有100%的转化率,通过冷冻干燥和称重证实。

  1. 将10 mL纯化纳米颗粒(约100mg)与10mL饱和N-[2-(3,4-二羟基苯基)乙基]硝酰胺(硝基多巴胺)溶液(约1mg / mL)混合。等待5分钟。
  2. 使用磁选清洗硝基多巴胺包被的MFC。倒出淡黄色的上清液。加水,用力摇晃。然后,使用磁铁倒出水以保留产品。重复这种洗涤几次,将深棕色的集合留在小瓶中。
    注意:准备浓度为20 mg / mL的水溶液,浓度为100 mg / mL的缓冲溶液和浓度为20 mg / mL的聚(AA-co-AMPS-co-PEG)聚合物溶液。
  3. 混合1 mL EDC溶液,1 mL MES缓冲液和3 mL聚合物溶液。通过旋转混合物轻轻搅拌,静置约5分钟。当完全结合时,它应该是一个透明和无色的溶液。
  4. 将此混合物添加到MFC集合中,并将小瓶放入冰浴中。将探头超声仪放入溶液中,然后将其打开(20 kHz时功率为250瓦)。
    1. 经过5分钟的超声处理后,在超声仪仍在运行时向小瓶中加入约5 mL超纯水。继续监测容器,确保没有产品溢出。将冰保持在冰水混合物中,因为由于超声处理的强度和热量,一些初始冰会融化。
    2. 让混合物再超声处理25分钟,总共30分钟。
  5. 将小瓶放在磁铁顶部以分离MFC并倒出上清液。
  6. 用去离子水清洗改良的MFC几次。
  7. 用超纯水填充含有MFC的小瓶。用0.1μm聚醚砜膜过滤器将这种液体移入真空过滤系统中,以除去任何不可逆聚集的MFC。确保冲洗漏斗壁以尽量减少产品损失。
  8. 真空过滤溶液。重复此过程2-3次。结果将是单分散MFC的纯化水溶液。
    注意:大约10%的产品将被不可逆地聚集,这种材料将保留在过滤器上,应丢弃。

结果

水热处理后,反应混合物变成粘稠的黑色分散体,如图 1所示。纯化后的结果是高度浓缩的MFC溶液,其行为类似于铁磁流体。当放置在手持式磁铁(<0.5 T)附近时,小瓶中的液体在几秒钟内就会做出反应,形成宏观的黑色团块,当磁铁放置在不同的位置时,可以四处移动。

该合成产生的产物的尺寸和铁氧体组成取决于反应混合物中加入的水量和锰与铁前...

讨论

这项工作证明了锰铁氧体纳米晶体的改性多元醇合成,这些纳米晶体聚集在一起形成均匀的纳米级聚集体29。在该合成中,氯化铁(III)和氯化锰(II)进行强制水解反应和还原,形成分子MnxFe3-xO4。这些铁氧体分子在反应器中的高温和高压下形成初级纳米晶体,最终组装成球形聚集体,这里称为磁铁矿铁氧体簇(MFC)。没有足够的反应时间或足够...

披露声明

作者没有什么可透露的。

致谢

这项工作得到了布朗大学和先进能源联盟的慷慨支持。我们非常感谢张青波博士建立的氧化铁MFC合成方法。

材料

NameCompanyCatalog NumberComments
0.1 Micron Vaccum Filtration FilterThermo Fisher ScientificNC9902431for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
2-Acrylamido-2-methylpropane sulfonic acid (AMPS, 99%)Sigma-Aldrich282731-250Greagent used in copolymer to surface coat nanoclusters and functionalize them for biological media
2,2′-Azobis(2-methylpropionitrile) (AIBN)Sigma-Aldrich441090-100Greagent used in copolymer making as the free ridical generator
4-Morpholineethanesulfonic acid, 2-(N-Morpholino)ethanesulfonic acid (MES)Sigma-AldrichM3671-250Gacidic buffer used to stabilize nanocluster surface coating process
Acrylic acidSigma-Aldrich147230-100Greagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; anhydrous, contains 200 ppm MEHQ as inhibitor, 99%
Analytical BalanceAvantorVWR-205ACused to weigh out solid chemical reagents for use in synthesis and dilution
Digital Sonifier and ProbeBransonB450used to sonicate nanocluster solution during surface coating to break up aggregates
Dopamine hydrochlorideSigma-AldrichH8502-25Gused in surface coating for ligand exchange reaction
Ethylene glycol (anhydrous, 99.8%)Sigma-Aldrich324558-2Lreagent used as solvent in hydrothermal synthesis of nanoclusters
Glass Vials (20mL)Premium VialsB1015container for nanocluster solution during washing and surface coating as well as polymer solutions
Graduated Beaker (100mL)Corning1000-100container for mixing of solid and liquid reagents during hydrothermal synthesis (to be transferred into autoclave reactor before oven)
Handheld MagnetMSC Industrial Supply, Inc.926739041/2" Long x 1/2" Wide x 1/8" High, 5 Poles, Rectangular Neodymium Magnet low strength magnet used to precipitate nanoclusters from solution (field strength is increased with steel wool when needed)
Hydrochloric acid (ACS grade, 37%)Fisher Scientific7647-01-0for removing leftover nanocluster debris and cleaning autoclave reactors for next use
Hydrothermal Autoclave ReactorToptionTOPT-HP500container for finished reagent mixture to withstand high temperature and pressure created by the oven in hydrothermal synthesis
Iron(III) Chloride Hexahydrate (FeCl3·6H2O, ACS reagent, 97%)ACS236489-500Greagent used in synthesis of nanoclusters as source of iron (III) that becomes iron (II) in finished nanocluster product (keep dry and weigh out quickly to avoid water contamination)
Labware Washer BrushesFisher Scientific13-641-708used to wash and clean glassware before synthesis
Magnetic Stir PlateThermo Fisher Scientific50093538for mixing of solid and liquid reagents during hydrothermal synthesis
Manganese chloride tetrahydrate (MnCl2·4H2O, 99.0%, crystals, ACS)Sigma-Aldrich1375127-2Greagent used in synthesis of nanoclusters as source of manganese
Micropipette (100-1000μL)Thermo Fisher ScientificFF-1000for transferring liquid reagents such as water and manganese chloride
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)Sigma-Aldrich25952-53-8used in surface coating to assist in ligand exchange of copolymer (keep bulk chemical in freezer and diluted solution in refrigerator)
N,N-Dimethylformamide (DMF)Sigma-Aldrich227056-2Lreagent used in copolymer making as the solvent
Polyacrylic acid sodium salt (PAA, Mw~6,000)PolyScience Inc.06567-250reagent used in hydrothermal synthesis to initially coat the nanoclusters (eventually replaced in surface coating step)
Poly(ethylene glycol) methyl ether acrylateSigma-Aldrich454990-250MLreagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; average Mn 480, contains 100 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor
Reagents Acetone, 4L, ACS ReagentCole-ParmerUX-78920-66used as solvent to precipitate nanoclusters during washing
Single Channel Pipette, Adjustable 1-10 mLEppendorf3123000080for transferring ethylene glycol and other liquids
Steel WoolLowe's788470used to increase the magnetic field strength in the vial to aid in precipitation of nanoclusters for washing and surface coating
Stirring BarThomas Scientific8608S92for mixing of solid and liquid reagents during hydrothermal synthesis
Table ClampGrainger29YW53for tight sealing of autoclave reactor to withstand high pressure of oven during hyrothermal synthesis
Urea (ACS reagent, 99.0%)Sigma-AldrichU5128-500Greagent used in hydrothermal synthesis to create a basic solution
Vaccum Filtration Bottle TopsThermo Fisher Scientific596-3320for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
Vacuum Controller V-850BuchiBU-V850for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
Vacuum OvenFisher Scientific13-262-51used to create high temperature and pressure needed for nanocluster formation in hydrothermal synthesis

参考文献

  1. Makridis, A., et al. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of Materials Chemistry B. 2 (47), 8390-8398 (2014).
  2. Nelson-Cheeseman, B., Chopdekar, R., Toney, M., Arenholz, E., Suzuki, Y. Interplay between magnetism and chemical structure at spinel-spinel interfaces. Journal of Applied Physics. 111 (9), 093903 (2012).
  3. Otero-Lorenzo, R., Fantechi, E., Sangregorio, C., Salgueiriño, V. Solvothermally driven Mn doping and clustering of iron oxide nanoparticles for heat delivery applications. Chemistry-A European Journal. 22 (19), 6666-6675 (2016).
  4. Mohapatra, J., et al. Enhancement of magnetic heating efficiency in size controlled MFe 2 O 4 (M= Mn, Fe, Co and Ni) nanoassemblies. Rsc Advances. 5 (19), 14311-14321 (2015).
  5. Qi, Y., et al. Carboxylic silane-exchanged manganese ferrite nanoclusters with high relaxivity for magnetic resonance imaging. Journal of Materials Chemistry B. 1 (13), 1846-1851 (2013).
  6. Anandhi, J. S., Jacob, G. A., Joseyphus, R. J. Factors affecting the heating efficiency of Mn-doped Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials. 512, 166992 (2020).
  7. Del Bianco, L., et al. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. Nanoscale. 11 (22), 10896-10910 (2019).
  8. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S. K., Antony, S. A. Enhanced catalytic activity and magnetic properties of spinel Mn x Zn 1−x Fe 2 O 4 (0.0≤x≤1.0) nano-photocatalysts by microwave irradiation route. Journal of Superconductivity and Novel Magnetism. 29 (8), 2141-2149 (2016).
  9. Kim, J., et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society. 139 (32), 10992-10995 (2017).
  10. Silva, L. H., Cruz, F. F., Morales, M. M., Weiss, D. J., Rocco, P. R. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Research & Therapy. 8 (1), 1-8 (2017).
  11. Otero-Lorenzo, R., Ramos-Docampo, M. A., Rodriguez-Gonzalez, B., Comesaña-Hermo, M., Salgueiriño, V. Solvothermal clustering of magnetic spinel ferrite nanocrystals: a Raman perspective. Chemistry of Materials. 29 (20), 8729-8736 (2017).
  12. Aghazadeh, M., Karimzadeh, I., Ganjali, M. R. PVP capped Mn2+ doped Fe3O4 nanoparticles: a novel preparation method, surface engineering and characterization. Materials Letters. 228, 137-140 (2018).
  13. Li, Z., et al. Solvothermal synthesis of MnFe 2 O 4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New Journal of Chemistry. 39 (1), 361-368 (2015).
  14. Guo, P., Zhang, G., Yu, J., Li, H., Zhao, X. Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 395, 168-174 (2012).
  15. Pardo, A., et al. Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools. Chemistry of Materials. 32 (6), 2220-2231 (2020).
  16. Xiao, Z., et al. Libraries of uniform magnetic multicore nanoparticles with tunable dimensions for biomedical and photonic applications. ACS Applied Materials & Interfaces. 12 (37), 41932-41941 (2020).
  17. Choi, Y. S., Young Yoon, H., Sung Lee, J., Hua Wu, J., Keun Kim, Y. Synthesis and magnetic properties of size-tunable Mn x Fe3−x O4 ferrite nanoclusters. Journal of Applied Physics. 115 (17), (2014).
  18. Creixell, M., et al. The effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nanoparticles. Journal of Materials Chemistry. 20 (39), 8539-8547 (2010).
  19. Latorre, M., Rinaldi, C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Rico Health Sciences Journal. 28 (3), (2009).
  20. Yeap, S. P., Lim, J., Ooi, B. S., Ahmad, A. L. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. Journal of Nanoparticle Research. 19 (11), 1-15 (2017).
  21. Lee, S. -. Y., Harris, M. T. Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. Journal of Colloid and Interface Science. 293 (2), 401-408 (2006).
  22. Yeap, S. P., Ahmad, A. L., Ooi, B. S., Lim, J. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir. 28 (42), 14878-14891 (2012).
  23. Wydra, R. J., Oliver, C. E., Anderson, K. W., Dziubla, T. D., Hilt, J. Z. Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. RSC Advances. 5 (24), 18888-18893 (2015).
  24. Bagaria, H. G., et al. Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. ACS Applied Materials & Interfaces. 5 (8), 3329-3339 (2013).
  25. Park, J. C., Park, T. Y., Cha, H. J., Seo, J. H. Multifunctional nanocomposite clusters enabled by amphiphilic/bioactive natural polysaccharides. Chemical Engineering Journal. 379, 122406 (2020).
  26. Hemery, G., et al. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorganic Chemistry. 56 (14), 8232-8243 (2017).
  27. Lartigue, L., et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano. 6 (12), 10935-10949 (2012).
  28. Yavayo, C. T., et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 314 (5801), 964-967 (2006).
  29. Matijević, E., Scheiner, P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride,-nitrate, and-perchlorate solutions. Journal of Colloid and Interface Science. 63 (3), 509-524 (1978).
  30. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J. Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine & Biology. 54 (5), 1 (2009).
  31. Zhu, X., Li, J., Peng, P., Hosseini Nassab, N., Smith, B. R. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Letters. 19 (10), 6725-6733 (2019).
  32. Tay, Z. W., et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 12 (4), 3699-3713 (2018).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

180

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。