A subscription to JoVE is required to view this content. Sign in or start your free trial.
We report a one-pot hydrothermal synthesis of manganese ferrite clusters (MFCs) that offers independent control over material dimension and composition. Magnetic separation allows rapid purification while surface functionalization using sulfonated polymers ensures the materials are non-aggregating in biologically relevant medium. The resulting products are well positioned for biomedical applications.
Manganese ferrite clusters (MFCs) are spherical assemblies of tens to hundreds of primary nanocrystals whose magnetic properties are valuable in diverse applications. Here we describe how to form these materials in a hydrothermal process that permits the independent control of product cluster size (from 30 to 120 nm) and manganese content of the resulting material. Parameters such as the total amount of water added to the alcoholic reaction media and the ratio of manganese to iron precursor are important factors in achieving multiple types of MFC nanoscale products. A fast purification method uses magnetic separation to recover the materials making production of grams of magnetic nanomaterials quite efficient. We overcome the challenge of magnetic nanomaterial aggregation by applying highly charged sulfonate polymers to the surface of these nanomaterials yielding colloidally stable MFCs that remain non-aggregating even in highly saline environments. These non-aggregating, uniform, and tunable materials are excellent prospective materials for biomedical and environmental applications.
The inclusion of manganese as a dopant in an iron oxide lattice can, under the appropriate conditions, increase the material's magnetization at high applied fields as compared to pure iron oxides. As a result, manganese ferrite (MnxFe3-xO4) nanoparticles are highly desirable magnetic nanomaterials due to their high saturation magnetization, strong response to external fields, and low cytotoxicity1,2,3,4,5. Both single domain nanocrystals as well as clusters of....
1. Synthesis of MFCs with control over MFCs' overall diameter and ferrite composition
After hydrothermal treatment, the reaction mixture turns into a viscous black dispersion as can be seen in Figure 1. What results after purification is a highly concentrated MFC solution that behaves like a ferrofluid. The fluid in the vial responds within seconds when placed near a handheld magnet (<0.5 T), forming a macroscopic black mass that can be moved around as the magnet is placed at different locations.
This synthesis yields products whose dimension a.......
This work demonstrates a modified polyol synthesis of manganese ferrite nanocrystals clustered together into uniform nanoscale aggregates29. In this synthesis, iron(III) chloride and manganese(II) chloride undergo a forced hydrolysis reaction and reduction, forming molecular MnxFe3-xO4. These ferrite molecules form primary nanocrystals under the high temperature and high pressure in the reactors, ultimately assembling into spherical aggregates termed her.......
This work was generously supported by Brown University and the Advanced Energy Consortium. We gratefully thank Dr. Qingbo Zhang for his established synthetic method of iron oxide MFCs.
....Name | Company | Catalog Number | Comments |
0.1 Micron Vaccum Filtration Filter | Thermo Fisher Scientific | NC9902431 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
2-Acrylamido-2-methylpropane sulfonic acid (AMPS, 99%) | Sigma-Aldrich | 282731-250G | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media |
2,2′-Azobis(2-methylpropionitrile) (AIBN) | Sigma-Aldrich | 441090-100G | reagent used in copolymer making as the free ridical generator |
4-Morpholineethanesulfonic acid, 2-(N-Morpholino)ethanesulfonic acid (MES) | Sigma-Aldrich | M3671-250G | acidic buffer used to stabilize nanocluster surface coating process |
Acrylic acid | Sigma-Aldrich | 147230-100G | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; anhydrous, contains 200 ppm MEHQ as inhibitor, 99% |
Analytical Balance | Avantor | VWR-205AC | used to weigh out solid chemical reagents for use in synthesis and dilution |
Digital Sonifier and Probe | Branson | B450 | used to sonicate nanocluster solution during surface coating to break up aggregates |
Dopamine hydrochloride | Sigma-Aldrich | H8502-25G | used in surface coating for ligand exchange reaction |
Ethylene glycol (anhydrous, 99.8%) | Sigma-Aldrich | 324558-2L | reagent used as solvent in hydrothermal synthesis of nanoclusters |
Glass Vials (20mL) | Premium Vials | B1015 | container for nanocluster solution during washing and surface coating as well as polymer solutions |
Graduated Beaker (100mL) | Corning | 1000-100 | container for mixing of solid and liquid reagents during hydrothermal synthesis (to be transferred into autoclave reactor before oven) |
Handheld Magnet | MSC Industrial Supply, Inc. | 92673904 | 1/2" Long x 1/2" Wide x 1/8" High, 5 Poles, Rectangular Neodymium Magnet low strength magnet used to precipitate nanoclusters from solution (field strength is increased with steel wool when needed) |
Hydrochloric acid (ACS grade, 37%) | Fisher Scientific | 7647-01-0 | for removing leftover nanocluster debris and cleaning autoclave reactors for next use |
Hydrothermal Autoclave Reactor | Toption | TOPT-HP500 | container for finished reagent mixture to withstand high temperature and pressure created by the oven in hydrothermal synthesis |
Iron(III) Chloride Hexahydrate (FeCl3·6H2O, ACS reagent, 97%) | ACS | 236489-500G | reagent used in synthesis of nanoclusters as source of iron (III) that becomes iron (II) in finished nanocluster product (keep dry and weigh out quickly to avoid water contamination) |
Labware Washer Brushes | Fisher Scientific | 13-641-708 | used to wash and clean glassware before synthesis |
Magnetic Stir Plate | Thermo Fisher Scientific | 50093538 | for mixing of solid and liquid reagents during hydrothermal synthesis |
Manganese chloride tetrahydrate (MnCl2·4H2O, 99.0%, crystals, ACS) | Sigma-Aldrich | 1375127-2G | reagent used in synthesis of nanoclusters as source of manganese |
Micropipette (100-1000μL) | Thermo Fisher Scientific | FF-1000 | for transferring liquid reagents such as water and manganese chloride |
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) | Sigma-Aldrich | 25952-53-8 | used in surface coating to assist in ligand exchange of copolymer (keep bulk chemical in freezer and diluted solution in refrigerator) |
N,N-Dimethylformamide (DMF) | Sigma-Aldrich | 227056-2L | reagent used in copolymer making as the solvent |
Polyacrylic acid sodium salt (PAA, Mw~6,000) | PolyScience Inc. | 06567-250 | reagent used in hydrothermal synthesis to initially coat the nanoclusters (eventually replaced in surface coating step) |
Poly(ethylene glycol) methyl ether acrylate | Sigma-Aldrich | 454990-250ML | reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; average Mn 480, contains 100 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor |
Reagents Acetone, 4L, ACS Reagent | Cole-Parmer | UX-78920-66 | used as solvent to precipitate nanoclusters during washing |
Single Channel Pipette, Adjustable 1-10 mL | Eppendorf | 3123000080 | for transferring ethylene glycol and other liquids |
Steel Wool | Lowe's | 788470 | used to increase the magnetic field strength in the vial to aid in precipitation of nanoclusters for washing and surface coating |
Stirring Bar | Thomas Scientific | 8608S92 | for mixing of solid and liquid reagents during hydrothermal synthesis |
Table Clamp | Grainger | 29YW53 | for tight sealing of autoclave reactor to withstand high pressure of oven during hyrothermal synthesis |
Urea (ACS reagent, 99.0%) | Sigma-Aldrich | U5128-500G | reagent used in hydrothermal synthesis to create a basic solution |
Vaccum Filtration Bottle Tops | Thermo Fisher Scientific | 596-3320 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
Vacuum Controller V-850 | Buchi | BU-V850 | for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution |
Vacuum Oven | Fisher Scientific | 13-262-51 | used to create high temperature and pressure needed for nanocluster formation in hydrothermal synthesis |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved