JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

由于PDX模型正在迅速成为转化肿瘤学领域的标准,因此本协议建立并表征了间变性甲状腺癌(ATC)和头颈部鳞状细胞癌(HNSCC)的患者来源异种移植(PDX)模型。

摘要

患者来源的异种移植(PDX)模型忠实地保留了原发肿瘤的组织学和遗传学特征,并保持了其异质性。基于PDX模型的药效学结果与临床实践高度相关。间变性甲状腺癌(ATC)是甲状腺癌最恶性的亚型,侵袭性强,预后差,治疗有限。虽然ATC的发病率仅占甲状腺癌的2%-5%,但其死亡率高达15%-50%。头颈部鳞状细胞癌(HNSCC)是最常见的头颈部恶性肿瘤之一,全球每年有超过60万例新病例。本文提出了详细的协议来建立ATC和HNSCC的PDX模型。本工作分析了影响模型构建成功率的关键因素,比较了PDX模型与原发肿瘤的组织病理学特征。此外,通过评估成功构建的PDX模型中代表性临床使用药物的 体内 治疗效果,验证了该模型的临床相关性。

引言

PDX模型是一种动物模型,其中人类肿瘤组织被移植到免疫缺陷小鼠中并在小鼠提供的环境中生长1。传统的肿瘤细胞系模型存在一些缺点,例如缺乏异质性,无法保留肿瘤微环境,在重复体外传代过程中易受遗传变异的影响,以及临床应用不良23。基因工程动物模型的主要缺点是人类肿瘤基因组特征的潜在丧失,新的未知突变的引入,以及难以确定小鼠肿瘤与人类肿瘤之间的同源程度4。此外,基因工程动物模型的制备成本高、耗时且效率相对低下4.

PDX模型在反映肿瘤异质性方面比其他肿瘤模型具有许多优势。从组织病理学的角度来看,虽然小鼠对应物随着时间的推移取代了人类基质,但PDX模型很好地保留了原发肿瘤的形态结构。此外,PDX模型保留了原发肿瘤至少四代的代谢组学特性,更好地反映了肿瘤细胞与其微环境之间复杂的相互关系,使其在模拟人肿瘤组织的生长、转移、血管生成和免疫抑制方面独树一帜5,67.在细胞和分子水平上,PDX模型准确反映了人类肿瘤的肿瘤间和肿瘤内异质性,以及原始癌症的表型和分子特征,包括基因表达模式、突变状态、拷贝数以及DNA甲基化和蛋白质组学89。不同传代的PDX模型对药物治疗具有相同的敏感性,表明PDX模型的基因表达高度稳定1011。研究表明,PDX模型对药物的反应与患者对该药物的临床反应之间存在极好的相关性1213。因此,PDX模型已成为一种强大的临床前和转化研究模型,特别是在药物筛选和临床预后预测方面。

甲状腺癌是内分泌系统常见的恶性肿瘤,是一种人类恶性肿瘤,近年来发病率迅速上升14。间变性甲状腺癌(ATC)是最恶性的甲状腺癌,患者的中位生存期仅为4.8个月15。虽然中国每年只有少数甲状腺癌患者被诊断为ATC,但死亡率接近100%161718。ATC通常生长迅速并侵入颈部的邻近组织以及颈部淋巴结,约一半的患者有远处转移1920。头颈部鳞状细胞癌(HNSCC)是世界上第六大常见癌症,也是癌症死亡的主要原因之一,估计每年有60万人患有HNSCC21,2223。HNSCC包括大量肿瘤,包括鼻子,鼻窦,口腔,扁桃体,咽部和喉部的肿瘤24。ATC和HNSCC是两种主要的头颈部恶性肿瘤。为了促进新型治疗药物和个性化治疗的开发,有必要开发稳健和先进的临床前动物模型,例如ATC和HNSCC的PDX模型。

本文介绍了建立ATC和HNSCC皮下PDX模型的详细方法,分析了模型构建中影响肿瘤取样率的关键因素,并比较了PDX模型与原发肿瘤的组织病理学特征。同时,在这项工作中,使用成功构建的PDX模型进行了 体内 药效学测试,以验证其临床相关性。

研究方案

所有动物实验均按照四川大学华西医院机构动物护理和使用委员会批准的实验动物护理评估与认证协会指南和协议进行。本研究使用4-6周龄的NOD-SCID免疫缺陷小鼠(两性)和4-6周龄的雌性Balb / c裸鼠。这些动物是从商业来源获得的(见 材料表)。华西医院伦理委员会授权对人类受试者进行研究(方案编号2020353)。每位患者都提供了书面知情同意书。

1. 实验准备

  1. 安排一次性刀片、消毒剪刀和镊子等肿瘤移植所需的器械,放在超净工作台上,提前用紫外线照射。
  2. 准备无菌盐水和培养皿,以便在测试期间使用。

2. 新鲜肿瘤组织的获取和运输

  1. 从手术室获取新鲜肿瘤样本(通常大于5 mm x 5 mm),并将其放入含有无菌HTK溶液(参见 材料表)或盐水的15 mL或50 mL离心管中。标记离心管。
    注意:新鲜的肿瘤样本是通过手术切除或穿刺从ATC或HNSCC患者中获得的。
  2. 将离心管放入预先准备好的冰箱中。
    注意:在此期间,移植操作员必须准备移植所需的物品(见 材料表)。
  3. 确保样品收集和运输到实验室进行PDX构建之间的时间不超过2小时。在运输过程中,用冰水混合物或冰袋包围装有组织的管子,以保持组织活性。

3.肿瘤移植

  1. 一旦肿瘤组织到达实验室,记录并重新编号。
    注意:对于本研究,患者信息严格保密。该程序的其余步骤在生物安全2级(BSL-2)实验室进行。进入实验室时,建议在工作服或防护服上穿工作服,戴帽子和口罩。肿瘤组织的治疗在生物安全柜中进行。
  2. 用75%酒精消毒含有肿瘤组织的离心管,并将其放在手术台上。使用无菌眼科钳将肿瘤组织转移到装有盐水的6cm培养皿中。接下来,用刀片将它们切成约 2 毫米 x 2 毫米和 3 毫米 x 3 毫米的小块。
  3. 将肿瘤组织碎片转移到含有适量盐水的6cm培养皿中,用密封膜包裹培养皿,将其放入冰盒中,并将其与必要的器械(一把剪刀,镊子和接种针)一起带入特定的无病原体(SPF)动物室。
  4. 按照以下步骤准备动物。
    1. 去除4-6周龄雌性或雄性NOD-SCID免疫缺陷小鼠右侧胸部的毛发,并用75%酒精消毒皮肤。通过腹膜内注射80mg / kg氯胺酮和10mg / kg甲苯噻嗪麻醉小鼠(见 材料表),并用兽医软膏涂抹眼睛以防止干燥。通过踏板反射的丧失确认麻醉深度。
    2. 用剪刀在小鼠右外侧胸部中间的皮肤上做一个2毫米的切口。
  5. 从培养皿中取出肿瘤片,并用镊子将其放入2.4mm x 2.0mm穿刺针(见 材料表)中。
  6. 握住鼠标,收紧穿刺部位的皮肤,使用含有肿瘤碎片的穿刺器通过最初的2毫米皮肤切口插入肿瘤,移动到肩膀后部,推动穿刺器芯。
  7. 确保肿瘤片被推出并留在套管穿刺形成的过渡窦中,然后拔出穿刺器。
  8. 如果肿瘤在抽出时随针头移动,请使用套管器将其重置并缝合切口。
    注意:在这项研究中,每只小鼠都接种在前后肢背侧。根据肿瘤大小,每个患者的每个肿瘤样本接种一至三只小鼠。

4. 肿瘤组织保存、固定和蛋白质冷冻

注意:剩余的肿瘤组织分别用于种子保存,固定和DNA / RNA /蛋白质冷冻。

  1. 在将其放入冷冻保存管之前,用无菌纱布从肿瘤表面去除盐水,以确保肿瘤表面不会过度潮湿。
  2. 将4至6片2 mm x 2 mm肿瘤组织放入2 mL细胞冷冻保存管中,将1 mL由90%胎牛血清(FBS)和10%二甲基亚砜(DMSO)组成的冷冻保存溶液加入管中,将管放入梯度冷却箱中,在-80°C冷冻过夜,最后, 将其转移到液氮中。
  3. 将3 mm x 3 mm肿瘤组织块置于10%缓冲福尔马林中以进行组织固定以进行病理检查。
  4. 将 3 mm x 3 mm 组织块放入 2 mL 细胞冷冻保存管中,在液氮中快速冷冻,然后转移到 −80 °C 冰箱中进行 DNA/RNA 和蛋白质提取。
  5. 收集患者的临床信息,如吸烟史、肿瘤大小、分化、病理亚型、癌症分级、癌症分期、远处转移、来源、病史、免疫组织化学、HNSCC患者人瘤病毒(HPV)感染、治疗用药等。

5. PDX模型肿瘤的传代、冷冻保存和复苏

  1. 每周一次使用游标卡尺测量小鼠皮下肿瘤的长度和宽度,并根据公式计算肿瘤体积:肿瘤体积= 0.5×长度×宽度2。绘制肿瘤生长曲线。
  2. 当PDX肿瘤达到2,000mm3时,将其传代给下一代小鼠,并进行肿瘤再移植。按照步骤4执行仪器的准备。
  3. 用80mg / kg氯胺酮麻醉后通过颈椎脱位对小鼠实施安乐死。
  4. 用75%的酒精消毒皮肤。然后,用剪刀切割肿瘤周围的皮肤,然后用镊子切除肿瘤,并将其放入培养皿中。
  5. 按照步骤3执行肿瘤移植程序。
  6. 按照步骤4对PDX模型肿瘤进行保存和冷冻保存。
  7. 对于肿瘤组织的复苏,遵循慢速冷冻和快速溶解的原则。从液氮中取出冷冻管后,迅速将其置于37°C的水浴中以快速溶解。
  8. 在水浴中轻轻摇晃冷冻管以加速解冻过程。
  9. 解冻,将肿瘤碎片转移到准备好的生理盐水中洗涤,然后接种下一代小鼠。具体操作请参见步骤3中的组织移植程序。

6.确定仑伐替尼和顺铂在ATC PDX模型中的治疗效果

注意:ATC PDX模型用于测试酪氨酸激酶抑制剂仑伐替尼和化疗药物顺铂25,2627的治疗效果。

  1. 选择ATC PDX模型(THY-017)的P5代肿瘤组织,切成2-4mm 3组织块,皮下接种(步骤3 )到10只4-6周雌性Balb / c裸鼠的右后部。
  2. 选择肿瘤体积在50-150mm3之间的15只小鼠,并将它们分成三组。
  3. 胃内给予仑伐替尼(10mg / kg),每天一次,持续15天,每3天腹膜内给予顺铂(3mg / kg),总共6剂,并用相同体积的生理盐水给予对照组。
  4. 每周两次测量小鼠的体重和肿瘤体积。
  5. 在测试结束时,对小鼠实施安乐死(步骤5.3),并称量肿瘤。

结果

共移植甲状腺癌标本18例,成功构建甲状腺癌PDX模型5例(肿瘤取率为27.8%),其中未分化甲状腺癌4例,间变性甲状腺癌1例。分析模型构建成功率与年龄、性别、肿瘤直径、肿瘤分级、分化等相关性。虽然4级肿瘤样本的模型成功率高于低分级样本,未分化肿瘤样本的成功率也高于高分化样本,但相关性分析结果表明,这些因素与PDX模型的成功率无关(表1).接种了17个HNSCC样本,并成功?...

讨论

本研究成功建立了ATC和HNSCC的皮下PDX模型。在PDX模型构建过程中,有很多方面需要注意。当肿瘤组织与患者分离时,应尽快放入冰盒中送实验室接种。肿瘤到达实验室后,操作人员必须注意保持无菌区域并练习无菌程序。对于穿刺活检样品,由于肿瘤组织特别小,接种后将样品与基质凝胶混合会更有利于模型的建立。原发肿瘤组织也应尽可能保存、固定和冷冻,以备将来研究之用。在接种过程中?...

披露声明

没有披露潜在的利益冲突。

致谢

本工作得到了四川省科技支撑计划(批准号:2019JDRC0019和2021ZYD0097)、四川大学华西医院优秀学科1.3.5项目(批准号ZYJC18026)、四川大学华西医院优秀学科1.3.5项目-临床研究孵化项目(批准号:2020HXFH023)、中央高校基本科研业务费专项(SCU2022D025)的支持。 成都市科技局国际合作项目(批准号:2022-GH02-00023-HZ)、四川大学创新星火项目(批准号:2019SCUH0015)、电子科技大学华西医院医工融合人才培养基金(批准号:HXDZ22012)。

材料

NameCompanyCatalog NumberComments
2.4 mm x 2.0 mm trocarShenzhen Huayang Biotechnology Co., Ltd18-9065
Balb/c nude miceBeijing Vital River Laboratory Animal Technology Co., Ltd.401
Biosafety cabinetSuzhou AntaiBSC-1300IIA2
BladeShenzhen Huayang Biotechnology Co., Ltd18-0823
Centrifuge tube Corning430791/430829
Cryopreservation tubeChengdu Dianrui Experimental Instrument Co., Ltd/
Custodiol HTK-SolutionCustodiol2103417
Dimethyl sulfoxide(DMSO)SIGMA-ALORICHD5879-500mL
Electronic balanceMETTLERME104
Electronic digital caliperChengdu Chengliang Tool Group Co., Ltd0-220
fetal bovine serum(FBS)VivaCellC04001-500
IBM SPSS Statistics 26IBM
KetamineJiangsu Zhongmu Beikang Pharmaceutical Co., Ltd 100761663
LenvatinibApexBioA2174
NOD-SCID immunodeficient miceBeijing Vital River Laboratory Animal Technology Co., Ltd.406
Pen-Strep SolutionBiological Industries03-03101BCS
Petri dishWHBWHB-60/WHB-100
Saline Sichuan KelunW220051705
ScissorShenzhen Huayang Biotechnology Co., Ltd18-0110
TweezerShenzhen Huayang Biotechnology Co., Ltd18-1241
Vet ointmentPfizer Inc.P10015353
XylazineDunhua Shengda Animal Medicine Co., Ltd070031777

参考文献

  1. Toolan, H. W. Successful subcutaneous growth and transplantation of human tumors in X-irradiated laboratory animals. Proceedings of The Society for Experimental Biology and Medicine. 77 (3), 572-578 (1951).
  2. Gillet, J. P., et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America. 108 (46), 18708-18713 (2011).
  3. Hausser, H. J., Brenner, R. E. Phenotypic instability of Saos-2 cells in long-term culture. Biochemical & Biophysical Research Communications. 333 (1), 216-222 (2005).
  4. Pérez-Mancera, P., Guerra, C., Barbacid, M., Tuvesonet, D. A. What we have learned about pancreatic cancer from mouse models. Gastroenterology. 142 (5), 1079-1092 (2012).
  5. Bruna, A., et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 167 (1), 260-274 (2016).
  6. Choi, S., et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Advanced Drug Delivery Reviews. 79-80, 222-237 (2014).
  7. Blomme, A., et al. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene. 37 (9), 1237-1250 (2018).
  8. Wang, D., et al. Molecular heterogeneity of non-small cell lung carcinoma patient-derived xenografts closely reflect their primary tumors. International Journal of Cancer. 140 (3), 662-673 (2016).
  9. Jung, J., et al. Generation and molecular characterization of pancreatic cancer patient-derived xenografts reveals their heterologous nature. Oncotarget. 7 (38), 62533-62546 (2016).
  10. Keysar, S., et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Molecular Oncology. 7 (4), 776-790 (2013).
  11. Rubio-Viqueira, B., et al. An in vivo platform for translational drug development in pancreatic cancer. Clinical Cancer Research. 12 (15), 4652-4661 (2006).
  12. Fiebig, H. H., et al. Development of three human small cell lung cancer models in nude mice. Recent Results in Cancer Research. 97, 77-86 (1985).
  13. Morelli, M. P., et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. Journal of Clinical Oncology. 30 (4), 45-48 (2012).
  14. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 68 (6), 394-424 (2018).
  15. Onoda, N., et al. Evaluation of the 8th edition TNM classification for anaplastic thyroid carcinoma. Cancers. 12 (3), 552 (2020).
  16. Nel, C., et al. Anaplastic carcinoma of the thyroid: A clinicopathologic study of 82 cases. Mayo Clinic Proceedings. 60 (1), 51-58 (1985).
  17. Mazzaferri, E. L. Increasing incidence of thyroid cancer in the United States, 1973-2002. Yearbook of Medicine. 2007, 496-499 (2007).
  18. Kebebew, E., Greenspan, F. S., Clark, O. H., Woeber, K. A., Mcmillan, A. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 103 (7), 1330-1335 (2005).
  19. Lin, B., et al. The incidence and survival analysis for anaplastic thyroid cancer: A SEER database analysis. American Journal of Translational Research. 11 (9), 5888-5896 (2019).
  20. Maniakas, A., Dadu, R., Busaidy, N. L., Wang, J. R., Zafereo, M. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000-2019. JAMA Oncology. 6 (9), 1397-1404 (2020).
  21. Gilardi, M., et al. Tipifarnib as a precision therapy for HRAS-mutant head and neck squamous cell carcinomas. Molecular Cancer Therapeutics. 19 (9), 1784-1796 (2020).
  22. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2016. CA. 66 (1), 7-30 (2016).
  23. Chow, L. Q. M. Head and neck cancer. New England Journal of Medicine. 382 (1), 60-72 (2020).
  24. Swiecicki, P. L., Brennan, J. R., Mierzwa, M., Spector, M. E., Brenner, J. C. Head and neck squamous cell carcinoma detection and surveillance: Advances of liquid biomarkers. Laryngoscope. 129 (8), 1836-1843 (2019).
  25. Wang, R., et al. Distribution and activity of lenvatinib in brain tumor models of human anaplastic thyroid cancer cells in severe combined immune deficient mice. Molecular Cancer Therapeutics. 18 (5), 947-956 (2019).
  26. Takahashi, S., et al. A phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncology. 15 (7), 717-726 (2019).
  27. Ferrari, S. M., et al. Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncology Reports. 39 (5), 2225-2234 (2018).
  28. Cabanillas, M. E., Habra, M. A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treatment Reviews. 42, 47-55 (2016).
  29. Jung, J., Seol, H. S., Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Research and Treatment. 50 (1), 1-10 (2018).
  30. Peng, S., et al. Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers. Journal of Translational Medicine. 11, 198 (2013).
  31. Derose, Y. S., et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine. 17 (11), 1514-1520 (2011).
  32. Chen, X., Shen, C., Wei, Z., Zhang, R., Xiao, K. Patient-derived non-small cell lung cancer xenograft mirrors complex tumor heterogeneity. Cancer Biology and Medicine. 18 (1), 184-198 (2021).
  33. Choi, Y. Y., et al. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Scientific Reports. 6, 22172 (2016).
  34. Maider, I. V., Andrés, C., Alberto, B. Preclinical models for precision oncology. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1872 (2), 239-246 (2018).
  35. Okada, S., Vaeteewoottacharn, K., Kariya, R. Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chemical & Pharmaceutical Bulletin. 66 (3), 225-230 (2018).
  36. Michael, G., et al. Tumor take rate optimization for colorectal carcinoma patient-derived xenograft models. BioMed Research International. 2016, 1715053 (2016).
  37. Bernardo, C., Costa, C., Sousa, N., Amado, F., Santos, L. Patient-derived bladder cancer xenografts: a systematic review. Translational Research. 166 (4), 324-331 (2015).
  38. Facompre, N. D., et al. Barriers to generating PDX models of HPV-related head and neck. Laryngoscope. 127 (12), 2777-2783 (2017).
  39. Kang, H. N., Kim, J. H., Park, A. Y., Choi, J. W., Kim, H. R. Establishment and characterization of patient-derived xenografts as paraclinical models for head and neck cancer. BMC Cancer. 20 (1), 316 (2020).
  40. Ahn, S. H., et al. An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Archives of Otolaryngology-Head & Neck Surgery. 134 (2), 190-197 (2008).
  41. Nucera, C., et al. A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid. 19 (10), 1077-1084 (2009).
  42. De Rose, F., et al. Galectin-3 targeting in thyroid orthotopic tumors opens new ways to characterize thyroid cancer. Journal of Nuclear Medicine. 60 (6), 770-776 (2019).
  43. Pearson, A. T., et al. Patient-derived xenograft (PDX) tumors increase growth rate with time. Oncotarget. 7 (7), 7993-8005 (2016).
  44. Huo, K. G., D'Arcangelo, E., Tsao, M. S. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Translational Lung Cancer Research. 9 (5), 2214-2232 (2020).
  45. Kumari, R., Xu, X., Li, H. Q. Translational and clinical relevance of PDX-derived organoid models in oncology drug discovery and development. Current Protocols. 2 (7), e431 (2022).
  46. Takahashi, N., et al. Construction of in vitro patient-derived tumor models to evaluate anticancer agents and cancer immunotherapy. Oncology Letters. 21 (5), 406 (2021).
  47. Barasch, A., et al. Photobiomodulation effects on head and neck squamous cell carcinoma (HNSCC) in an orthotopic animal model. Supportive Care in Cancer. 28 (6), 2721-2727 (2020).
  48. Wang, M., et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB Journal. 32 (3), 1537-1549 (2018).
  49. Wu, C., Wang, X., Shang, H., Wei, H. Construction of a humanized PBMC-PDX model to study the efficacy of a bacterial marker in lung cancer immunotherapy. Disease Markers. 2022, 1479246 (2022).
  50. Yao, L. C., et al. Creation of PDX-bearing humanized mice to study immuno-oncology. Methods in Molecular Biology. 1953, 241-252 (2019).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

196

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。