这份手稿描述了一种新型的直接植物输液装置,用于筛选分子对细菌(亚洲念珠菌 )或其昆虫载体(柸橘假丝菌,Kuwayama)的有效性,这些细菌与黄龙冰柑橘病有关。
测试植物中治疗性化合物的功能是农业研究的重要组成部分。叶面喷洒和土壤浸泡方法是常规方法,但也有缺点,包括可变吸收和测试分子的环境分解。树木的树干注入已经很成熟,但大多数方法都需要昂贵的专有设备。为了筛选黄龙冰的各种治疗方法,需要一种简单、低成本的方法将这些化合物输送到感染韧皮部限制性细菌亚洲 念珠菌 (CLas) 或被韧皮部摄食 CLas 昆虫载体 Diaphorina citri Kuwayama (D. citri) 感染的小型温室种植柑橘树的维管组织中。
为了满足这些筛选要求,设计了一种连接到植物树干的直接植物输液(DPI)装置。该设备使用尼龙基3D打印系统和易于获得的辅助组件制成。使用荧光标记物5,6-羧基荧光素二乙酸酯在柑橘植物中测试了该装置的化合物吸收功效。常规观察到标记在整个植物中的均匀化合物分布。
此外,该装置用于递送抗菌和杀虫分子,以确定它们分别对CLas和 D. citri 的影响。使用该设备将氨基糖苷类抗生素链霉素输送到CLas感染的柑橘植物中,导致CLas滴度从处理后2周降低到4周。将新烟碱类杀虫剂吡虫啉输送到 柑橘类植物中,导致7天后木虱死亡率显着增加。这些结果表明,这种DPI装置代表了一种有用的系统,用于将分子输送到植物中进行测试,并促进研究和筛选目的。
商业和景观环境中的植物管理通常需要使用化合物来优化植物生长和健康。这些分子如何传递取决于分子的类型、分子的功能、植物的类型以及现有的管理系统。叶面和土壤施用是最简单的输送策略,但某些分子吸收的局限性需要直接输送。这些分子的一个例子是治疗性分子,当它们在植物内系统性移动时功能最佳,但不能通过简单的局部应用有效传递1。黄龙病(HLB)就是这种情况,也称为柑橘绿化病。HLB是一种与韧皮部限制性细菌亚洲念珠菌(CLas)相关的疾病,该细菌不能在植物或其昆虫载体Diaphorina citri Kuwayama(D. citri)2之外培养。
如果假定的治疗分子是基因产物,则可以通过创建表达这些化合物的转基因植物来测试它们。然而,转基因植物生产可能是时间和资源密集型的,高度依赖于基因型,并且可以通过基因沉默来抑制3。此外,即使这些转基因显示出有希望的结果,监管和公众认知的限制也会降低其商业接受的可能性4,5。然而,化合物的外源应用简化了生物和合成分子的测试,因为它不需要生产稳定或瞬时表达的转基因植物,从而减少了测试分子效果的时间和资源。一种有效和高效地系统性植物递送外源化合物的方法可用于各种研究和筛选目的。
这些应用之一是分析植物维管系统内的全身分子运动,这可以使用可追踪的标记来完成,无论它们是荧光、可见光还是独特的化学同位素6,7,8,9。一种常用的荧光标记物是5,6-羧基荧光素-二乙酸酯(CFDA),它是一种透膜染料,被细胞内酯酶降解为5,6-羧基荧光素(CF),随后变成荧光和膜不透性10。CFDA已被广泛用于监测植物组织中的韧皮部运输,汇和源关系以及脉管系统模式11,12。
除了这些标记物外,某些化合物可能直接改变植物的生理机能,以提高生产力或在除草剂的情况下杀死植物。杀虫剂和抗菌化合物都是提高植物生产力的一种手段,尤其是在存在HLB的情况下。用于控制CLas的抗菌分子的一个例子是链霉素。链霉素是一种氨基糖苷类抗生素,最初是从 灰链霉菌 中分离出来的,已被证明可以通过抑制蛋白质生物合成来抑制细菌生长13。在杀虫剂方面,HLB研究的主要目标是 柑橘杜鹃,它将CLas从一棵树传播到另一棵树14。为此,通常使用新烟碱类药物,例如吡虫啉,因为它们是控制害虫的黄金标准15。所有这些不同的用途都是当前工厂管理策略的重要方面,新产品的开发取决于有效的筛选分析。
用于将化合物引入木本植物的一种方法是直接注射到树干中。已经设计了各种系统,这些系统对预钻孔注射部位的需求各不相同,这些系统利用基于压力的喷射或被动流动16。尽管基于压力的系统允许快速引入给定化合物,但需要考虑强迫液体通过阻塞或栓塞的脉管系统造成的潜在物理损伤17。尽管叶面喷施化合物或淋水施用的时间较少,但直接植物注射可减少由于空气或土壤损失而导致的目标化合物的浪费,并且还可以通过减少暴露于外部环境来延长化合物处于活性状态的时间18。这两个方面对于保存昂贵的试剂和确保研究环境中重复之间的一致性都很重要。
本研究描述了创新的直接植物输注(DPI)装置的设计,构造和使用,该设备可用于评估感兴趣的化合物如何影响寄主植物。标准3D打印机用于制造设备本身和与其结构相关的几个组件。这种内部构建方法允许研究人员根据其特定的实验需求修改设备和设备组件,并减少对市售植物注射设备的依赖。设备设置简单高效,所有辅助组件都很容易获得且价格低廉。尽管该系统设计用于各种植物物种,但此处介绍的示例与盆栽柑橘类植物有关。此外,这项研究表明,该设备能够有效地将多种类型的化合物系统地输送到年轻的柑橘植物中,而不会造成致死。测试的化合物包括CFDA,用于评估植物中的化合物分布,以及链霉素和吡虫啉,用于验证通过DPI 输送 时观察到这些化合物的抗菌和杀虫作用。
1. 实验性复方注射用柑橘植株的生产
2. DPI器件和模具组件的三维打印
3.塑溶胶环模的制作
4. 塑溶胶环的铸造
5. 将 DPI 设备连接到工厂
6. 使用 DPI 设备应用感兴趣的复方
7. 使用CFDA观察柑橘类植物的维管运动
8. 测定链霉素处理后叶片样品中CLas滴度的变化
9.吡虫啉治疗后柑橘D. 的死亡率的测定
直接输液装置组件
直接输液装置的基本版本高8厘米,正面和侧面宽3.3厘米(图1A)。它包含一个与喷口相邻的中央储液槽,这些组分中可包含的总体积为 2.0 mL(图 1D)。增塑溶胶环高1.8厘米,直径2.7厘米(图1C)。该环还包含两个通道:一个用于容纳DPI设备喷口,另一个用于适应被处理树的树干的可变直径。此外,垂直通道周围有一个凹槽,用于引导多余的处理围绕树木,这允许通过树皮吸收额外的化合物(图1F)。组装正确后,增塑溶胶环应与DPI设备齐平,并且喷口应与树上钻的孔对齐(图1B和图1E)。
国家食品药品监督管理总局
为了研究DPI装置将外源化学品引入柑橘类植物的有效性,使用该装置浸润了2.0 mL的2 mM CFDA。在处理过的植物的脉管系统中检测到荧光信号(图2A),但在用20%DMSO在H2O中处理的对照植物中不存在荧光信号(图2B)。在所有解剖的植物组织类型中都观察到该信号,包括叶叶肉、叶柄脉管系统、茎脉管系统和根脉管系统(图 2C)。该信号在处理后24小时内在植物中观察到,并且在整个组织中相对均匀地分布。
链霉素
为了测试引入的化合物是否对HLB疾病有治疗作用,将2.0 mL杀菌化合物链霉素以9.5 mg / mL(总共19 mg)的浓度引入CLas阳性瓦伦西亚(柑橘)甜橙植物中。将这些植物维持在温室盆中,并使用qPCR随着时间的推移监测CLas滴度(通过CLas基因组当量每个柑橘基因组当量测量)(图3A)。链霉素和H2O处理植物的初始平均DNA CLas滴度分别为0.562 CLas基因组/柑橘基因组和0.49 CLas基因组/柑橘基因组。与同一时间点的H2O对照相比,链霉素治疗后7-28天通过qPCR检测到平均细菌滴度降低。此外,链霉素处理植物和H2O处理植物的时间0和28日平均细菌滴度之间的差异分别为0.314和0.117。
该实验旨在测量植物在不同时间段内对不同处理的反应。使用双因子二次响应面设计,将时间视为具有四个水平(0 天、7 天、14 天和 28 天)的定量离散因子,并将时间视为具有两个水平(H2O 和链霉素)的分类因子。八种治疗组合中的每一种都使用五次重复,并测量CLas滴度作为响应变量。使用基于Box-Cox图分析的对数10对数据进行转换。使用赤池信息准则(AICc)21通过前向选择进行模型约简,从而消除了时间和交互效应。其余因素,处理,是显着的(p = 0.0252),链霉素处理的植物在所有时间点的总和上显示出比H2O处理的植物(0.496)更低的平均CLas滴度(0.349)(图3B)。CLas滴度的降低对应于链霉素处理的植物在60天后新健康潮红生长的偶尔增加,如用H2O处理的代表性树木的照片所证明(图3C)与19mg链霉素(图3D)。
吡虫啉
吡虫啉被引入亚洲柑橘木虱(ACP)感染的幼年柚子植物中,使用DPI设备测试其作为柚子D.杀虫筛选试验的潜力。在三种不同的浓度(5.28 μL/L、52.8 μL/L 和 528 μL/L)下测试了商用吡虫啉杀虫剂溶液的单次 2.0 mL 处理以及水对照。处理前每三个冲洗芽的平均总卵数范围为280.5至321,每个处理组使用的植物之间没有显着差异(图4A)。水对照组处理后7天3个冲洗芽的平均总存活若虫分别为293.75、268、97.5和2,吡虫啉溶液分别为5.28μL/L、52.8μL/L和528μL/L(图4B)。这表示,与根据单因素方差分析进行Tukey事后分析的水对照相比,在52.8 μL/L(p = 0.029)和528 μL/L(p = 0.002)吡虫啉溶液水平下木虱若虫的出现显着减少。此外,与水对照(图4C)相比,吡虫啉处理品系(图4D)的若虫蜜露产量减少,在最高吡虫啉溶液水平下木虱若虫死亡率的增加在视觉上很明显。
图1:直接植物输液装置和增塑溶胶环 。 (A)完整的直接植物输液装置和(C)增塑溶胶环及其尺寸。(B)直接植物输液装置和塑料溶胶环连接并附着在柑橘树上。(D)直接植物输液装置的垂直横截面,(F)增塑溶胶环,和(E)这两个组件连接并附着在柑橘树上。 请点击此处查看此图的大图。
图2:25厘米柑橘类植物叶中脉的横截面。图像显示使用直接植物输注装置在H2O中用(A)2mM CFDA或(B)20%DMSO处理后24小时。(C)2 mM CFDA处理后24 h各种植物组织的横截面,包括直接植物输液装置上方5厘米的树干(左上),直接植物输液装置下方5厘米的树干(左中),根(左下),叶中脉(右上),叶叶柄(右中)和叶叶肉(右下)。比例尺 = 1 毫米。缩写:CFDA = 5,6-羧基荧光素二乙酸酯;DMSO = 二甲基亚砜。请点击此处查看此图的大图。
图 3:使用 qPCR 监测 CLas 滴度(通过每个柑橘基因组当量的 CLas 基因组当量测量)。 (A) 显示 CLas DNA 滴度变化的时间过程,将用 19 mg 链霉素处理的五种植物与用 H2O 对照处理的五种植物进行比较。这些点表示给定时间点给定治疗的平均值。误差线表示平均值的标准误差。(B)条形图显示了H2O-和链霉素处理的植物在所有时间点的平均CLas滴度。误差条表示 95% 置信区间,星号表示链霉素和 H2O 处理植物的平均 CLas 滴度之间的显著差异 (* = p < 0.05) 根据单因素方差分析。(C)用(C)H 2 O或(D)链霉素直接灌注植物后0个月和2个月的柑橘植物代表性图像。用链霉素处理的植物在2个月后显示出新的浅绿色叶片潮红生长,这表明CLas滴度降低。缩写:CLas = 亚洲念珠菌 Liberibacter asiaticus。请点击此处查看此图的大图。
图4:监测受ACP侵扰的香橼幼年植物的木虱若虫死亡率。条形图显示 (A) 估计的初始卵计数和 (B) 在用水对照和各种稀释的吡虫啉处理后 7 天,三个柑橘冲洗的存活的柑橘假虫。误差条表示平均值的标准误差,星号表示给定处理水平与水控制之间的显著差异(* = p < 0.05,** = p < 0.01),根据单因素方差分析,然后是Tukey的事后分析。使用直接植物输注装置用 (C) 水对照或 (D) 528 μL/L 吡虫啉处理 7 天后,柑橘假虫感染的柑橘类柑橘的图像。缩写:ACP = 亚洲柑橘木虱;D. citri = Diaphorina citri Kuwayama。请点击此处查看此图的大图。
每个样品的体积(μL) | 元件 | |||||
12.5 | 2x GoTaq qPCR,含 BRYT 绿色染料预混液 | |||||
5 | 脱氧核糖核酸模板 (20 纳克/微升) | |||||
0.5 | 10 μM 引物 F 和 R 用于 CLas | 克拉斯: CTTACCAGCCCTTGACATGTATAGG (前锋); TCCCTATAAAGTACCCAACATCTAGGTAAA (Reverse) | ||||
0.5 | 10 μM 底漆 F 和 R 用于柑橘内务管理 | 柑橘脱水素:TGAGTACGAGCCGAGTGTTG(向前); AAAACTTCACCGATCCACCAG (Reverse) | ||||
6.5 | H2O |
表 1:用于定量链霉素处理的柑橘品系中 CLas 滴度的 qPCR 混合物。 图中显示了用于CLas DNA定量和柑橘DNA定量的16S Las Long引物和柑橘脱水素引物的序列。
步 | 温度(°C) | 时间 | |
1 | 初始变性 | 95 | 2 分钟 |
2 | 变性 | 95 | 15 秒 |
3 | 退火 | 60 | 20 秒 |
4 | 外延 | 72 | 20 秒 |
5 | 转到步骤 2,重复 39x | ||
6 | 熔融曲线 | 60 在 0.2 °C/s 时斜坡升至 95 | 3 分钟 |
表2:用于定量链霉素处理的柑橘系中CLas滴度的qPCR的反应条件。
补充图S1:显示模具组装过程以生成塑溶胶环的图像。 (A)使用卡扣在一起的塑料块来生成塑料溶胶环模具的第一层。(B)含有硅氧烷RTV橡胶、催化剂、食用色素和肥皂的混合溶液。(C)均匀浇注第一层塑溶胶环模。(D) 顶部为中心保持核心印记的增塑溶胶环图案图片。(E)将塑性塑溶醇环图案插入未固化的模具第二层中。(F)遮蔽胶带和橡胶槌,用于在第二层固化时固定图案。(G)加入第三层模具,直到它与图案的顶部齐平。(H) 从模具中去除图案。(一)全结构塑溶胶环模。 请点击此处下载此文件。
补充图S2:显示与直接植物输液装置相关的增塑溶胶环的组装过程的图像。 (一)塑溶胶环组件部件,包括模具、带O形圈的中心芯和输送通道芯。(B)在芯上涂上不粘喷雾食用油,以方便硬化后去除塑溶胶环。(C)将中心芯和O形圈插入模具中。(D)垂直于中心芯插入输送通道芯。(五)塑溶胶环芯部件在模腔内正确组装。(F)用于生成增塑溶胶环的塑料醇。(G)在微波炉中加热塑料溶胶。(H)加热后搅拌增塑溶胶。(一)检查增塑溶胶温度。(J) 将加热的塑料溶胶倒入组装好的芯中。(K) 允许在组装芯周围冷却塑溶胶。(L)完全组装好的增塑溶胶环连接到直接植物输液装置上。 请点击此处下载此文件。
补充图S3:显示直接植物输液装置组装过程的图像。 (A)在柑橘植物的中心钻一个孔,为化合物输送创造一个通道。(B)钻孔的正面视图。(C)用与化合物输送通道相对的剃须刀片切开塑料溶胶环。(D)在先前钻孔的位置将塑料溶胶环紧紧地安装在茎上。(E)将植物直接输液装置安装到增塑溶胶环上,将装置上的化合物输送插口插入增塑溶胶环的通道中。(F)使用硅胶带将植物直接输液装置固定在增塑溶胶环上,并将整个装置固定到位。(G)用感兴趣的化合物填充直接植物输液装置室。(H)使用注射器从工厂钻孔中抽出空气并开始化合物的流动。(I)在直接植物输液装置室的开口处涂上蜡密封膜并戳一个孔以防止真空。(J)柑橘类植物上完全组装的直接植物输液装置。 请点击此处下载此文件。
补充文件1:塑溶胶环中心柱芯。4 mm 树的 STL 文件。请点击此处下载此文件。
补充文件2:塑溶胶环中心柱芯。6 mm 树的 STL 文件。请点击此处下载此文件。
补充文件3:塑溶胶环中心柱芯。8 mm 树的 STL 文件。请点击此处下载此文件。
补充文件4:塑溶胶环中心柱芯。10 mm 树的 STL 文件。请点击此处下载此文件。
补充文件5:塑溶胶环中心柱芯。12 mm 树的 STL 文件。请点击此处下载此文件。
补充文件6:塑溶胶环中心柱芯。14 mm 树的 STL 文件。请点击此处下载此文件。
补充文件7:塑料溶胶环输送通道芯。4 mm 树的 STL 文件。请点击此处下载此文件。
补充文件8:塑溶胶环输送通道芯。6 mm 树的 STL 文件。请点击此处下载此文件。
补充文件9:塑溶胶环输送通道芯。8 mm 树的 STL 文件。请点击此处下载此文件。
补充文件10:塑料溶胶环输送通道芯。10 mm 树的 STL 文件。请点击此处下载此文件。
补充文件11:塑溶胶环输送通道芯。12 mm 树的 STL 文件。请点击此处下载此文件。
补充文件12:塑料溶胶环输送通道芯。14 mm 树的 STL 文件。请点击此处下载此文件。
补充文件13:植物直接输液装置。STL 文件。请点击此处下载此文件。
补充文件14:用于制造塑溶胶环模具的图案。STL 文件。请点击此处下载此文件。
为了使DPI装置被认为是将外源化合物输送到植物中的可行方法,它必须有助于对各种组织类型进行稳健和一致的化合物摄取。使用CFDA的实验清楚地显示了不动音和基瓣化合物的运动,以及叶片的血管系统和叶肉细胞。此外,并且可能由于该DPI设备中使用的钻孔为化合物吸收提供了大量的表面积,因此CFDA在茎的所有部分中以相对相等的量存在,而不仅仅是在与设备相邻的脉管系统的一小部分中,正如先前使用树干注射的植物染料吸收研究所见的那样6.此外,使用DPI设备测试了绿色荧光蛋白和花卉染料的递送,并观察到这些化合物的分布与CFDA相似(数据未显示)。这些数据表明,该装置可用于系统递送各种大小和分子结构不同的化合物。然而,值得注意的是,基于叶片发育阶段的复合吸收存在差异,年轻发育中的叶比较老的成熟叶吸收更多的化合物。这可能是由于汇与源组织中存在的脉管系统特性的变化,应针对给定的实验进行优化。
DPI装置对CFDA、GFP和花卉染料的可视化表现出足够的化合物吸收,并且还分别显示出链霉素和吡虫啉的抗菌和杀虫作用。这两种化合物在单次 2.0 mL 处理后 1 周均导致目标生物体活力发生变化。这些数据表明,DPI装置可用于全植物测定,以测试各种化合物的生存能力,以控制微生物和害虫。此外,由于其与血管系统的直接接触,该装置甚至可以提供机会来测试根或表皮细胞无法有效吸收的化合物。特别感兴趣的是RNA干扰(RNAi),因为它可用于调节宿主植物,病原体或病原体载体内的基因表达。先前通过苹果和葡萄植株树干上的钻孔引入发夹RNA的研究表明,RNA分子仅限于木质部组织,这表明这些分子可能仅对咀嚼和木质部汁液喂养生物有效22。鉴于DPI装置使用类似的钻孔递送系统,因此使用该装置递送的发夹RNA也可能仅限于木质部组织。然而,在DPI装置的链霉素治疗后观察到韧皮部限制性CLas滴度的降低强烈表明这种抗生素存在于韧皮部中。因此,使用DPI装置输送的化合物的血管分布可能取决于它们的大小和化学性质,并且应单独评估每个分子。
尽管市场上有许多商用DPI设备,但此处描述的设备可以在内部制造并且是可修改的。通过这种方式,可以根据所使用的植物种类和实验设计进行尺寸的改进和变化,并且不依赖于商业产品。此外,该装置是半永久性地附着在植物上,这意味着可以同时对给定化合物进行多次处理,而不必通过多次化合物注射重新伤害植物。需要注意的是,如果安装不正确,设备可能会泄漏。结果,化合物会流失到环境中,而不是被输送到工厂。因此,在设置过程中和之后的头几天,应注意检查设备是否有任何泄漏迹象。虽然在树上钻一个洞是潜在的有害的,但选择这种方法是为了确保稳定和一致的化合物吸收。此外,在这些实验中,DPI设备的连接没有看到对植物健康的不利影响。但是,实验设计中应包括额外的植物,以替换那些在整个给定实验过程中可能失去活力的植物。最后,由于该装置使用被动流来引入化合物,因此很难预测不同植物物种或同一物种的发育阶段的吸收率。如果化合物吸收的速度是一个限制因素,这可能会使实验复杂化。为了获得最佳结果,应计划实验,以便为植物提供足够的时间完全吸收 2.5 mL 化合物,这可能需要长达 1 周的时间。总之,该DPI装置是快速评估抗菌或杀虫化合物对CLas及其载体D. citri的植物内活性的有效工具,因此提供了比先前提出的分离叶测定法更多的关于系统有效性和对植物性能影响的信息23。毫无疑问,该系统的应用范围远远超出了本研究中描述的特定用途。
作者没有利益冲突。在本出版物中使用贸易、公司或公司名称是为了方便读者。此类使用并不构成美国农业部或农业研究局对任何产品或服务的正式认可或批准,排除其他可能合适的产品或服务。美国农业部 (USDA) 禁止在其所有计划和活动中基于种族、肤色、国籍、年龄、残疾以及适用的性别、婚姻状况、家庭状况、父母状况、宗教、性取向、遗传信息、政治信仰、报复或因为个人的全部或部分收入来自任何公共援助计划而进行歧视。并非所有禁止的依据都适用于所有程序。需要其他方式(盲文、大字体、录音带等)的残疾人应致电 (202) 720-2600(语音和 TDD)联系美国农业部的目标中心。要提出歧视投诉,请写信给美国农业部民权办公室主任,地址:1400 Independence Avenue, S.W., Washington, D.C. 20250-9410,或致电 (800) 795-3272(语音)或 (202) 720-6382 (TDD)。美国农业部是一个机会均等的提供者和雇主。
作者要感谢Mant Acon在这项研究中使用的植物。这笔资金由美国农业部 (USDA) CRIS 项目 8062-22410-007-000-D 和美国农业部 NIFA 拨款 2020-70029-33176 提供。
Name | Company | Catalog Number | Comments |
0.5 cm Diameter Steel Balls | Ballistic Products Inc. | #SHT #T | |
10 mL Luer-Lok Syringe | Becton Dickinson | 382903029952 | |
20 G 1 Syringe Needle | Becton Dickinson | 305175 | |
2 mL Screw Cap Tubes | USA Scientific | 1420-9710 | |
3/32nd Inch Black Oxide Drill Bit | Sears | 964077 | |
3D Printer | Markforged | F-PR-2027 | |
3D Printing Software | Markforged | F-SW-FDVX | |
3D Printing Software | Markforged | S-FW-OEVX | |
5(6)-CFDA (5-(and-6)-Carboxyfluorescein Diacetate) | Invitrogen | C195 | |
5/64th Inch Black Oxide Drill Bit | Sears | 964502 | |
96 Well qPCR Machine | Roche | 5815916001 | |
Centrifuge | Eppendorf | 22621408 | |
Fluorescent Microscope | Olympus | SP-BX43-BI | |
Fluorescent Microscope Filter | Chroma | 69401-ET | |
Gloss Clear Spray Paint | Rustoleum | 249117 | |
Grey Lego Baseplate | Lego | 11024 | |
Handheld Cordless Drill | Makita | 6349D | |
Homogenizer | Fisher Scientific | 15-340-163 | |
Imidacloprid 2F | Quali-Pro | 83080133 | |
Liquid Plastisol Medium Hardness | Fusion X Fishing Lures | XSOL-505 | |
Red Silicone 70 Shore A O-Ring | Grainger | Varies by Size | |
Non-Stick Cooking Spray | PAM | 64144030217 | |
NucleoSpin Plant II | Macherey-Nagel | 740770.5 | |
Parafilm | Bemis | HS234526A | |
Poly Viyl Acetate Based Glue | Elmers | E301 | |
qPCR Master Mix | Promega | A6001 | |
qPCR Primers | Integrated DNA Technologies | Varies by DNA sequence | |
Reverse Transcriptase | Promega | A5003 | |
Single Edge Razor Blade | Garvey | 40475 | |
Translucent Silicone RTV Rubber | Aero Marine Products | AM 115T | |
Transparent Silicone Tape | Maxwell | KE30S | |
Truncated Oncocin 112 | Genscript | Varies by peptide sequence | |
White 1 x 6 Lego Piece | Lego | 300901 | |
White Nylon | Markforged | F-MF-0003 |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。