需要订阅 JoVE 才能查看此. 登录或开始免费试用。
本文所述的协议利用定向梯度直方图技术提取了各种振动状态下混凝土图像样品的特征。它采用支持向量机进行机器学习,从而产生了一种具有最小训练样本要求和低计算机性能要求的图像识别方法。
本文采用定向梯度直方图技术提取了不同振动状态下捕获的混凝土图像样本的特征。利用支持向量机(SVM)学习图像特征与振动状态之间的关系。机器学习结果随后用于评估混凝土振动状态的可行性。同时,分析了方向梯度直方图计算参数对识别精度的影响机理。结果验证了采用定向梯度直方图-SVM技术识别混凝土振动状态的可行性。识别准确率最初随着方向梯度的块大小或统计间隔数量的增加而增加,然后逐渐降低。识别准确率也随着二值化阈值的增加而线性降低。通过使用分辨率为1024 x 1024像素的样本图像并优化特征提取参数,可以达到100%的识别准确率。
混凝土是建筑行业广泛使用的基本建筑材料。在泵送过程中,混凝土经常产生空隙,需要通过振动压实。振动不足可能导致混凝土表面呈蜂窝状,而过度振动会导致混凝土离体 1,2。振动操作的质量显着影响成型混凝土结构的强度 3,4,5,6 和耐久性 7,8。Cai等[9,10]将实验研究与数值分析相结合,研究了振动对骨料沉降和混凝土耐久性的影响机制。结果表明,振动时间和骨料颗粒对骨料沉降有很大影响,而骨料密度和水泥基材料的塑性粘度影响最小。振动导致骨料沉积在混凝土试样的底部。此外,随着振动时间的增加,混凝土试样底部的氯离子浓度降低,而顶部的氯离子浓度显着增加9,10。
1.具体样品图像采集
该协议旨在分析方向梯度特征的三向量计算参数如何影响支持向量机识别混凝土振动状态的精度。方向梯度特征向量的主要计算参数包括方向梯度统计块大小、方向梯度统计角度区间数和二进制格雷阈值。本节使用三个主要计算参数作为变量来设计测试。测试参数级别详见 表 1。对分辨率为 1024 x 1024 像素的混凝土图像样本共进行了 100 次测试。与 表1 中描述的参数相对应.......
本文利用支持向量机(SVM)学习各种混凝土振动状态样本的图像特征。基于机器学习结果,提出了一种基于图像识别的具体振动状态识别方法。为了提高识别精度,控制图像分割、图像二值化和定向梯度特征值提取这三个关键步骤的参数至关重要。根据测试结果,采用较小的二值化阈值对具体样品图像进行预处理,并利用128 pixels x 128 pixel的图像分割块大小。统计角度区间的方向梯度数设置为 12。.......
作者没有什么可透露的。
我们衷心感谢武汉城建集团2023年度科研专项(NO.7)对这项工作的资助。
....Name | Company | Catalog Number | Comments |
camera | SONY | A6000 | The sensor size is 23.5x15.6mm, the maximum acquisition resolution is 1440 * 1080, and the effective pixel is 24.3 million. |
concrete | Wuhan Construction Changxin Technology Development Co., Ltd. | C30 pumping concrete | According to the standard of ' concrete strength test and evaluation standard ' ( GB / T 50107-2010 ), the standard value of cubic compressive strength is 30 MPa pumping concrete. |
Matlab | MathWorks | Matlab R2017a | MATLAB's programming interface provides development tools for improving code quality maintainability and maximizing performance. It provides tools for building applications using custom graphical interfaces. It provides tools for combining MATLAB-based algorithms with external applications and languages |
Processor | Intel | 12th Gen Intel(R) Core (TM) i7-12700H @ 2.30GHz | 64-bit Win11 processor |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。