S'identifier

Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats Représentatifs
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Le protocole décrit dans cet article utilise la technique de l’histogramme à gradient directionnel pour extraire les caractéristiques d’échantillons d’images concrètes dans divers états vibratoires. Il utilise une machine à vecteur de support pour l’apprentissage automatique, ce qui donne lieu à une méthode de reconnaissance d’image avec des exigences minimales en matière d’échantillons d’apprentissage et de faibles exigences en matière de performances informatiques.

Résumé

Dans cet article, la technologie de l’histogramme à gradient directionnel est utilisée pour extraire les caractéristiques d’échantillons d’images concrètes capturés dans différents états de vibration. La machine à vecteurs de support (SVM) est utilisée pour apprendre la relation entre les caractéristiques de l’image et l’état de vibration. Les résultats de l’apprentissage automatique sont ensuite utilisés pour évaluer la faisabilité de l’état vibratoire du béton. Simultanément, le mécanisme d’influence des paramètres de calcul de l’histogramme de gradient directionnel sur la précision de reconnaissance est analysé. Les résultats démontrent la faisabilité de l’utilisation de la technologie d’histogramme à gradient directionnel et de SVM pour identifier l’état vibratoire du béton. La précision de la reconnaissance augmente d’abord, puis diminue à mesure que la taille du bloc du gradient directionnel ou le nombre d’intervalles statistiques augmente. La précision de reconnaissance diminue également linéairement avec l’augmentation du seuil de binarisation. En utilisant des exemples d’images d’une résolution de 1024 pixels x 1024 pixels et en optimisant les paramètres d’extraction des caractéristiques, il est possible d’obtenir une précision de reconnaissance de 100 %.

Introduction

Le béton est un matériau de construction fondamental largement utilisé dans l’industrie de la construction. Lors du pompage, le béton développe fréquemment des vides qui nécessitent un compactage par vibration. Des vibrations inadéquates peuvent entraîner une surface en béton alvéolé, tandis qu’une vibration excessive peut entraîner une ségrégation du béton 1,2. La qualité du fonctionnement des vibrations a un impact significatif sur la résistance 3,4,5,6 et la durabilité des structures en béton coffré

Protocole

1. Acquisition d’images d’échantillons concrets

  1. Transporter le béton jusqu’au lieu de travail, où il sera coulé par le camion-pompe.
  2. Pour capturer des images, allumez l’équipement de prise de vue en déplaçant l’interrupteur de la touche d’alimentation vers la droite et en le tournant sur la position ON . Réglez le bouton de mode de l’appareil photo sur le mode automatique vert, en vous assurant que l’objectif de l’appareil photo est parallèle à la surface en béton, puis appuyez sur la touche de l’obturateur. Capturez 20 échantillons d’images de béton non vibré, en les enregistrant dans .jpg format ....

Résultats Représentatifs

Ce protocole a pour but d’analyser comment les paramètres de calcul à trois vecteurs de la caractéristique de gradient directionnel affectent la précision de la SVM dans l’identification de l’état vibratoire du béton. Les principaux paramètres de calcul du vecteur d’entités de gradient directionnel incluent la taille du bloc statistique de gradient directionnel, le nombre d’intervalles d’angle statistique de gradient directionnel et le seuil de gris binaire. Cette section utilise trois paramètres de .......

Discussion

Cet article utilise la machine à vecteurs de support (SVM) pour apprendre les caractéristiques de l’image de divers échantillons d’état vibratoire du béton. Sur la base des résultats de l’apprentissage automatique, une méthode concrète de reconnaissance de l’état vibratoire basée sur la reconnaissance d’images est proposée. Pour améliorer la précision de la reconnaissance, il est crucial de contrôler les paramètres des trois étapes clés : la segmentation de l’image, la binarisation de l’ima.......

Déclarations de divulgation

Les auteurs n’ont rien à divulguer.

Remerciements

Nous remercions chaleureusement le projet de recherche scientifique annuel (NO.7) du groupe de construction urbaine de Wuhan 2023 pour le financement de ces travaux.

....

matériels

NameCompanyCatalog NumberComments
cameraSONYA6000The sensor size is 23.5x15.6mm, the maximum acquisition resolution is 1440 * 1080, and the effective pixel is 24.3 million.
concreteWuhan Construction Changxin Technology Development Co., Ltd.C30 pumping concreteAccording to the standard of ' concrete strength test and evaluation standard ' ( GB / T 50107-2010 ), the standard value of cubic compressive strength is 30 MPa pumping concrete.
MatlabMathWorksMatlab R2017aMATLAB's programming interface provides development tools for improving code quality maintainability and maximizing performance.
It provides tools for building applications using custom graphical interfaces.
It provides tools for combining MATLAB-based algorithms with external applications and languages
Processor Intel12th Gen Intel(R) Core (TM) i7-12700H @ 2.30GHz64-bit Win11 processor 

Références

  1. Jiang, L., Tian, Z., Wang, K., Sun, X. Estimating the segregation of concrete under vibration based on electrical method. Concrete. 1, 41-44 (2023).
  2. Ren, B., Ye, Z., Wang, D., Wu, B., Tan, Y.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Ing nierienum ro 203

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.