JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议描述了一种简单的过程,该过程利用方便的塑料微模具进行简单的微压花操作,以在纳米纤维化纤维素纸上制造微通道,实现最小宽度为200μm。

摘要

纳米纸源自纳米纤维化纤维素,作为一种有前途的微流体应用材料,已经引起了人们的极大兴趣。它的吸引力在于一系列卓越的品质,包括异常光滑的表面、出色的光学透明度、具有纳米级孔隙率的均匀纳米纤维基质以及可定制的化学特性。尽管基于纳米纸的微流控技术发展迅速,但目前用于在纳米纸上创建微通道的技术,如3D打印、喷涂或手动切割和组装,对实际应用至关重要,但仍具有一定的局限性,特别是对污染的敏感性。此外,这些方法仅限于毫米级通道的生产。本研究介绍了一种简单的工艺,利用方便的塑料微模具进行简单的微压花操作,在纳米纸上制造微通道,实现最小宽度 200 μm。所开发的微通道优于现有方法,实现了四倍的改进,并且可以在 45 分钟内完成。此外,还优化了制造参数,并为应用程序开发人员提供了方便的快速参考表。演示了层流混合器、液滴发生器和基于纳米纸的功能性分析设备 (NanoPAD) 的概念验证,这些设备设计用于使用表面增强拉曼光谱进行罗丹明 B 传感。值得注意的是,NanoPAD表现出卓越的性能和改进的检测限。这些出色的结果可归因于纳米纸的卓越光学性能和最近开发的精确微压花方法,使NanoPAD的集成和微调成为可能。

引言

最近,纳米纤维化纤维素 (NFC) 纸(纳米纸)已成为一种非常有前途的基板材料,可用于柔性电子、能源器件和生物医学等各种应用 1,2,3,4。纳米纸来源于天然植物,具有成本效益、生物相容性和可生物降解性,使其成为传统纤维素纸的有吸引力的替代品5,6。其特殊性能包括表面粗糙度小于 25 nm 的超光滑表面和致密的纤维素基质结构,允许创建高度结构化的纳米结构7。纳米纸中丰富的羟基有助于其紧凑和紧密堆积的纳米纤维素结构8.纳米纸具有出色的光学透明度和最小的光学雾度,非常适合光学传感器。此外,其固有的亲水性使无泵流动,即使其结构较厚,也能提供自主流体运动9,10。纳米纤维素在生物传感器、导电电子设备、细胞培养平台、超级电容器、电池等方面具有多种应用,展示了其多功能性和潜力11,12。特别是,纳米纤维素在纸基分析微流控装置(μPAD)中很有前途,与传统的色谱纸相比具有独特的优势。

在过去十年中,μPAD因其经济实惠、生物相容性、无泵操作和易于生产而受到广泛关注13,14。这些设备已成为有效的即时诊断工具,特别是在资源有限的环境中15,16,17。该领域的一项重大进步是由George Whitesides18和Bingcheng Lin小组19率先开发的蜡印刷,通过在色谱纸上加入微通道来创建功能性μPAD。随后,μPADs迅速发展,各种生物传感技术,包括电化学方法20、化学发光21和酶联免疫吸附测定(ELISA)22、23、24,成功用于检测各种生物标志物,如蛋白质25,26、DNA、27,28、RNAs29,30和蛋白质25,26DNA、27,28、RNAs29,30和外泌体31.尽管取得了这些成就,μPAD仍然面临挑战,包括流速慢和溶剂蒸发。

已经提出了几种在纳米纸32,33,34上创建微通道的方法。一种方法涉及将牺牲成分 3D 打印到材料中,但它需要疏水涂层来限制无泵操作33。另一种技术涉及使用胶水在纳米纸之间手动堆叠通道层,这是劳动密集型的32。或者,将纳米纤维素纤维喷涂到预图案化的模具上可以产生微通道,但它涉及耗时且昂贵的模具制备34。值得注意的是,这些方法仅限于毫米级微通道,损害了微流控设备在试剂体积消耗和集成度方面的优势。开发具有微米级分辨率的简单纳米纸微通道图案化工艺仍然是一个挑战。

本研究提出了一种基于实际微压花的独特纳米纸微通道图案化方法。与现有方法相比,该方法具有多项优势,因为它不需要昂贵或专门的设备,简单、经济高效且高度准确。凸微通道模具是通过激光切割聚四氟乙烯 (PTFE) 薄膜制成的,聚四氟乙烯 (PTFE) 薄膜以其化学惰性和不粘特性而闻名。然后使用该模具将微通道压印到纳米纸凝胶膜上。在顶部涂上第二层纳米纸凝胶以形成封闭的空心通道。使用这种图案化技术,开发了纳米纸上的基本微流控设备,包括层流混合器和液滴发生器。此外,还演示了表面增强拉曼显微镜(SERS)NanoPAD的制备。通过在通道中引入两种化学试剂(AgNO3 和 NaBH4),实现了基于银纳米颗粒的 SERS 底物的原制备,从而在低检测限 (LOD) 下获得了卓越的性能。

研究方案

1. 纳米纸微通道图案的微压花工艺

  1. 模具准备
    注:有关模具制备的详细信息,请参阅 Yuan 等人 12
    1. 按照 材料表中的指示准备PTFE薄膜。
    2. 激光切割准备好的PTFE薄膜以制作凸微通道模具(图1A-I)。
      注意:PTFE模具的尺寸决定了线性一阶函数关系中的微通道尺寸(图2E,F)。
  2. 纳米纸制备
    1. 将4.0g(2,2,6,6-四甲基哌啶-1-基)氧基(TEMPO)氧化的NFC凝胶(见 材料表)分散在蒸馏水中(终浓度为0.1wt%)。
    2. 在室温下以120.8× g 充分搅拌悬浮液30分钟,直到看不到纤维素絮凝体。
    3. 对透明悬浮液进行真空过滤以获得纳米纸凝胶(图1A-II)。
      注:在本例中,获得的纳米纸凝胶的直径为4厘米。通过选择不同半径的抽滤装置,可以针对各种应用定制NanoPAD,从而实现不同规模的NanoPAD设计。
  3. 纳米纸凝胶压花
    1. 将PTFE模具放在纳米纸凝胶的表面上。
    2. 在优化的压力和温度下,使用PTFE模具通过热压机压印纳米纸凝胶(图1A-III)每次10分钟(图2A-D)。
      注意:更高的压花压力(250 kPa 至 1000 kPa)可提高制造精度,但不应超过 1000 kPa,以防止损坏纤维素结构。较高的压花温度(25-100°C)通过促进脱水和脱碳来提高微通道的准确性,但温度不应超过75°C,以避免凝胶起皱和降低透光率7。在本例中,优化的压花参数为 750 kPa 和 75 °C。
  4. 脱模剂
    1. 从滤膜上剥下一层过滤纳米纸凝胶(图1A-IV)。
  5. 粘 接
    1. 将剥离的层附着在纳米纸凝胶的压花层顶部,将两层堆叠在一起以形成中空微通道结构(图1A-V)。
      注意:与纤维悬浮液和干燥纳米纸相比,“凝胶状”纳米纸中的氢键更强,增强了纳米纤维素纤维的缠结和粘附。因此,两层“凝胶状”纳米纸可以在没有外力的情况下通过自扩散紧密结合。
  6. 干燥
    1. 将两层纳米纸凝胶置于75°C的干燥箱中约30分钟(图1A-VI)。

2. 基础微流控装置的构建

  1. 层流混合机的构造
    1. 按照步骤1准备具有直线和弯曲通道的NanoPAD(图3A)。
      注意:在本例中,通道的尺寸为 1 mm 宽和 50 μm 深度。
    2. 同时在入口区域添加红色和蓝色液滴,允许流动自动通过空心通道。
      注:红色和蓝色溶液在直通道中的成功独立流动及其在弯曲通道末端的混合可归因于微流体装置中层的低雷诺数和剪切应力引起的径向流动35
  2. 液滴发生器的构造
    1. 根据步骤1准备具有T型连接通道的双入口NanoPAD(图3D)。
    2. 将水和十六烷(油)这两种不混溶的液体引入T型连接通道的两个入口区域以产生液滴(图3E)。
      注意:在本例中,T 型结通道的尺寸为 1 mm 宽、25 mm 长和 50 μm 深。
    3. 将 Q1 的速度固定为 6 μL/min,将 Q2 的速度固定在 n × Q 1 (n =1-6 )。使用两个注射泵并将它们设置为上述速度以注入水和油。此行为由一个简单的缩放方程(如下所示)控制。
      注意:在本例中,将油和有色水倒入通道36
      figure-protocol-2301
      其中 α = 1,β = 1,L 是液滴的长度,W 是液滴的宽度,Q1 和 Q2 分别是水和十六烷的流速37,38

3. 原位 AgNP生长

  1. NanoPADs制备
    1. 根据步骤1制备具有会聚检测区的双入口NanoPAD(图4A)。
  2. 连续离子层吸附和反应过程
    1. 制备 20 mM AgNO3 溶液和 20 mM NaBH4 溶液(参见 材料表)。
    2. 将 5 μL 的 20 mM AgNO3 溶液滴入流道的左侧入口区。
    3. 让 AgNO3 溶液在反应区停留 30 秒。
      注意:重复步骤 3.2.2。和 3.2.3.五次保证AgNPs均匀分布而不结聚,这可以解释较高的能带强度。
    4. 将 5 μL 蒸馏水滴入流道的左侧入口区域进行冲洗。
      注意:重复步骤 3.2.4。三次,以确保通过洗涤去除过多的、未吸附的 Ag 离子。
    5. 将 5 μL 的 20 mM NaBH4 溶液加入流道的右侧入口区域。
      注意:重复步骤 3.2.5。直到AgNPs在反应区均匀生成。步骤3中涉及的化学反应由以下式39表示:
      figure-protocol-3213

      在本例中,在NanoPAD上形成了致密、均匀、结构良好的AgNP阵列(图4B)。AgNPs的平均直径为55nm(图4C)。

4. SERS测量

  1. 拉曼光谱系统制备
    1. 打开激光器并启动拉曼光谱仪的随附软件(参见 材料表)。
    2. 使用 50 倍物镜聚焦和收集拉曼信号,使用 532 nm 激光进行激发。
    3. 将光谱分辨率设置为 2 cm-1 以实现准确测量。将拉曼光谱测量范围设置为 400 cm-1 至 600 cm-1
    4. 使用硅晶圆校准拉曼光谱仪12.
      注意:执行步骤 4.1。对于步骤 4.2。
  2. 罗丹明 B (RhB) 测量
    1. 将 4.7 mg RhB(参见 材料表)溶解在 10 mL 乙醇中,制备 1 mM RhB 溶液。
    2. 通过在乙醇中稀释 1 mM RhB 溶液,制备一系列浓度范围为 10 μM 至 0.1 pM 的 RhB 溶液。
    3. 将 5 μL RhB 溶液加入 NanoPADs 通道的入口区域并使其干燥。
      注意:重复步骤 4.2.3。用于步骤4.2.2中指示的不同浓度的RhB溶液。
    4. 将激励时间设置为 10 s,将光栅设置为 2 cm−1,将周期数设置为 1。设置拉曼光谱测量范围从 500 cm-1 到 1800 cm−1
    5. 分别调整粗调焦螺钉和精调焦螺钉以达到正确的对焦,然后单击 停止 以保存位置。
    6. 单击“开始” 开始 测量。
    7. 重复测量七次并保存收集的数据。
    8. 关闭激光。
  3. 数据分析
    1. 将保存的数据导入数据分析软件(参见 材料表)。
    2. 根据保存的数据计算平均频谱。
    3. 选择绘制拉曼光谱的 线草 图选项。
    4. 利用 峰值分析仪 工具设置谱图的基线。
    5. 应用 信号过程 - 平滑功能来平滑光谱以获得最终结果。

结果

通过方便的微压花技术,利用实用的塑料微模具,设计了一种在纳米纸上创建微通道图案的独特方法。值得注意的是,该方法在小至200μm的尺度上实现了微通道图案化,与现有方法相比,这代表了四倍的改进32,33,34。在对图案参数进行微调后,所提供的指南在制造过程中表现出出色的可重复性,其特点是标准偏差最小。观察到?...

讨论

本研究的主要重点是开发一种在纳米纸上制造微通道的简单方法。设计了一种使用 PTFE 作为模具的高效压花技术来应对这一挑战12.通过优化温度和压花压力,进行了一系列实验,建立了可靠的NanoPAD制造工艺。此外,还演示了使用快速参考表来调整NanoPADs在不同领域的应用。虽然这种方法高效稳定,但也遇到了一些挑战。最初,金属因其光滑性而被用作模具,但在将它们从粘合剂?...

披露声明

作者没有什么可透露的。

致谢

作者感谢江苏省高等学校自然科学基金(22KJB460033)和江苏省科技计划-青年学者(BK20200251)项目的资助。这项工作还得到了西交利物浦大学人工智能大学研究中心、西交利物浦大学江苏省数据科学与认知计算工程研究中心和SIP AI创新平台(YZCXPT2022103)的部分支持。还感谢制造系统工程国家重点实验室通过开放项目(SKLMS2023019)和仿生工程教育部重点实验室的支持。

材料

NameCompanyCatalog NumberComments
AgNO3 Hushi (Shanghai, China)7761-88-8>99%
EthanolHushi (Shanghai, China)64-17-5>99%
HexadecaneMacklin (Shanghai, China)544-76-3>99%
LabSpec softwareHoriba (Japan)LabSpec5
MelamineMacklin (Shanghai, China)108-78-1>99%
NaBH4Aladdin (Shanghai, China)16940-66-2>99%
Origin lab softwareOriginLab (USA)
Polyethylene terephthalate (PET) Myers Industries (Akron, USA)
Polytetrafluoroethylene filmsShenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China)Teflon film
PVDF filter membraneEMD Millipore Corporation (USA)VVLP04700pore size: 0.1 μm
Raman spectrometerHoriba (Japan)Xplo RA
Rhodamine BMacklin (Shanghai, China)81-88-9>95%
Scanning electron microscopy (SEM)FEI(USA)Scios 2 HiVac
Silicon waferHoriba (Japan)diameter: 5 mm
TEMPO-oxidized NFC slurryTianjin University of Science and Technology1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm

参考文献

  1. Zhu, H., Fang, Z., Preston, C., Li, Y., Hu, L. Transparent paper: fabrications, properties, and device applications. Energy & Environmental Science. 7 (1), 269-287 (2013).
  2. Nogi, M., Iwamoto, S., Nakagaito, A. N., Yano, H. Optically transparent nanofiber paper. Advanced Materials. 21 (16), 1595-1598 (2009).
  3. Li, X., et al. Three-dimensional sulfated bacterial cellulose/gelatin composite scaffolds for culturing hepatocytes. Cyborg and Bionic Systems. 4, 0021 (2023).
  4. Barhoum, A., Samyn, P., Öhlund, T., Dufresne, A. Review of recent research on flexible multifunctional nanopapers. Nanoscale. 9 (40), 15181-15205 (2017).
  5. Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Materials Today. 16 (6), 220-227 (2013).
  6. Martin-Martinez, F. J. Designing nanocellulose materials from the molecular scale. Proceedings of the National Academy of Sciences. 115 (28), 7174-7175 (2018).
  7. Sehaqui, H., Liu, A., Zhou, Q., Berglund, L. A. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules. 11 (9), 2195-2198 (2010).
  8. Fang, Z., et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Letters. 14 (2), 765-773 (2014).
  9. Zheng, G., et al. Nanostructured paper for flexible energy and electronic devices. MRS Bulletin. 38 (4), 320-325 (2013).
  10. Chen, L., Ying, B., Song, P., Liu, X. A nanocellulose-paper-based sers multiwell plate with high sensitivity and high signal homogeneity. Advanced Materials Interfaces. 6 (24), 1901346 (2019).
  11. Koga, H., et al. Transparent, conductive, and printable composites consisting of tempo-oxidized nanocellulose and carbon nanotube. Biomacromolecules. 14 (4), 1160-1165 (2013).
  12. Yuan, W., et al. Facile microembossing process for microchannel fabrication for nanocellulose-paper-based microfluidics. ACS Applied Materials & Interfaces. 15 (5), 6420-6430 (2023).
  13. Rolland, J. P., Mourey, D. A. Paper as a novel material platform for devices. MRS Bulletin. 38 (4), 299-305 (2013).
  14. Martinez, A. W., Phillips, S. T., Butte, M. J., Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition. 46 (8), 1318-1320 (2007).
  15. Chin, C. D., Linder, V., Sia, S. K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab on a Chip. 7 (1), 41-57 (2006).
  16. Chin, C. D., et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Medicine. 17 (8), 1015-1019 (2011).
  17. Martinez, A. W., Phillips, S. T., Whitesides, G. M., Carrilho, E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Analytical Chemistry. 82 (1), 3-10 (2010).
  18. Carrilho, E., Martinez, A. W., Whitesides, G. M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical Chemistry. 81 (16), 7091-7095 (2009).
  19. Lu, Y., Shi, W., Qin, J., Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Analytical Chemistry. 82 (1), 329-335 (2010).
  20. Li, X., Zhao, C., Liu, X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsystems & Nanoengineering. 1 (1), 1-7 (2015).
  21. Nie, Z., et al. Electrochemical sensing in paper-based microfluidic devices. Lab on a Chip. 10 (4), 477-483 (2010).
  22. Cai, T., et al. A paper-based microfluidic analytical device with a highly integrated on-chip valve for autonomous ELISA. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). , 271-274 (2022).
  23. Murdock, R. C., et al. Optimization of a paper-based ELISA for a human performance biomarker). Analytical Chemistry. 85 (23), 11634-11642 (2013).
  24. Cheng, C. M., et al. Paper-based ELISA. Angewandte Chemie. 122 (28), 4881-4884 (2010).
  25. Holstein, C. A., et al. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers. Analytical and Bioanalytical Chemistry. 408 (5), 1335-1346 (2016).
  26. Tenda, K., et al. Paper-based antibody detection devices using bioluminescent bret-switching sensor proteins. Angewandte Chemie International Edition. 57 (47), 15369-15373 (2018).
  27. Gong, M. M., Nosrati, R., San Gabriel, M. C., Zini, A., Sinton, D. Direct DNA Analysis with paper-based ion concentration polarization. Journal of the American Chemical Society. 137 (43), 13913-13919 (2015).
  28. Gan, W., et al. A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab on a Chip. 14 (19), 3719-3728 (2014).
  29. Liu, Y., et al. Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosensors and Bioelectronics. 197, 113781 (2022).
  30. Yuan, H., et al. Microfluidic-assisted Caenorhabditis elegans sorting: current status and future prospects. Cyborg and Bionic Systems. 4, 0011 (2023).
  31. Kim, H., et al. Origami-paper-based device for microvesicle/exosome preconcentration and isolation. Lab on a Chip. 19 (23), 3917-3921 (2019).
  32. Ying, B., et al. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab on a Chip. 20 (18), 3322-3333 (2020).
  33. Shin, S., Hyun, J. Matrix-assisted three-dimensional printing of cellulose nanofibers for paper microfluidics. ACS Applied Materials & Interfaces. 9 (31), 26438-26446 (2017).
  34. Browne, C., Garnier, G., Batchelor, W. Moulding of micropatterned nanocellulose films and their application in fluid handling. Journal of Colloid and Interface Science. 587, 162-172 (2021).
  35. Paul, R., et al. Shear stress related blood damage in laminar couette flow. Artificial Organs. 27 (6), 517-529 (2003).
  36. Thuo, M. M., et al. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chemistry of Materials. 26 (14), 4230-4237 (2014).
  37. Garstecki, P., Fuerstman, M. J., Stone, H. A., Whitesides, G. M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip. 6 (3), 437-446 (2006).
  38. Nisisako, T., Torii, T., Higuchi, T. Droplet formation in a microchannel network. Lab on a Chip. 2 (1), 24-26 (2002).
  39. Wang, Y., Zhang, X., Wen, G., Liang, A., Jiang, Z. Facile synthesis of a highly SERS active nanosilver sol using microwaves and its application in the detection of E. coli using Victoria blue B as a molecular probe. Analytical Methods. 8 (24), 4881-4887 (2016).
  40. Pham, T. T. H., Dien, N. D., Vu, X. H. Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection. RSC Advances. 11 (35), 21475-21488 (2021).
  41. Li, D., Li, D. W., Li, Y., Fossey, J. S., Long, Y. T. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. Journal of Materials Chemistry. 20 (18), 3688-3693 (2010).
  42. Sun, C. H., Wang, M. L., Feng, Q., Liu, W., Xu, C. X. Surface-enhanced Raman scattering (SERS) study on Rhodamine B adsorbed on different substrates. Russian Journal of Physical Chemistry A. 89 (2), 291-296 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

3D NanoPADs Rhodam

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。