需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
这项对癌症研究中单细胞测序的文献计量分析表明,中国和美国发表的学术文章明显多于其他国家。突发检测可识别“肿瘤内异质性”、“克隆进化”和“药物递送系统”等新兴术语,这些术语有望影响未来的研究。
由于癌症的生物系统复杂,对人类健康构成重大挑战,需要进行深入分析。单细胞测序已成为研究这些系统的重要工具,能够在单细胞水平上检测基因表达和表观遗传修饰。为了阐明该领域的研究趋势、合作网络和知识传播,使用 Web of Science 核心合集数据库进行了文献计量分析,涵盖 2010 年 1 月 1 日至 2023 年 12 月 31 日的出版物。R 中的 Bibliometrix 包用于提取和分析关键出版物数据,包括文献类型、国家、机构、作者和关键字。此外,还使用了 CiteSpace、VOSviewer 和 Online Analysis Platform of Literature Metrology 进行数据编译和可视化。该分析确定了来自 75 个国家和地区的 3,129 个机构的 34,074 名作者,为 788 种学术期刊上发表的 5,680 篇关于癌症单细胞测序的出版物做出了贡献。中国和美国成为出版物数量的领先国家。哈佛大学出版的出版物数量最多(320 篇),其中哈佛大学附属的 Aviv Regev 被认为是主要贡献者。领先的期刊,如 Frontiers in Immunology 和 Nature Communications,突出了已建立和新兴的研究领域,包括免疫微环境和免疫疗法。未来研究的主要趋势和潜在领域包括肿瘤内异质性、克隆进化和药物递送系统。本研究全面概述了肿瘤学中的单细胞测序研究,强调了其在技术进步和国际合作的推动下的快速发展。加强全球合作伙伴关系、开发综合分析工具和解决数据复杂性对于推进个性化癌症治疗和加深对癌症生物学的了解至关重要。
癌症是最有害的疾病之一,是全球第二大死亡原因1。据估计,到 2035 年,全球约有四分之一的人口将受到癌症的直接影响 2,3。癌症的发病机制主要与细胞生长失调有关,而细胞生长失调受多种致瘤因素的影响 4,5。“癌症标志”被概念化为一组功能能力,可促进从正常细胞状态过渡到肿瘤生长,特别是那些对恶性肿瘤形成至关重要的能力6。测序技术在促进我们对疾病发病机制的理解方面发挥着关键作用。然而,由于肿瘤固有的异质性,通过肿瘤组织的高通量测序分析来识别低丰度干细胞的基因组特征存在重大挑战 7,8。
单细胞测序包括基因组学、转录组学、表观基因组学、蛋白质组学和代谢组学,是一种在单细胞水平上阐明细胞和分子景观的强大方法9,10。它在癌症研究中的应用显着增强了对肿瘤病变中存在的生物学特征和动力学的理解,从而促进了对癌症发展和转移的更全面理解。
文献计量分析研究了学术出版物的结构特征和属性,并已广泛用于科学文献的定性和定量评估11,12。通过比较来自不同国家、机构、研究人员和出版物的贡献,可以阐明和预测特定研究领域内的潜在进展。尽管专注于癌症单细胞测序研究的系统和叙述性综述大幅增加,但在定量评估领域内的综合分析仍然存在明显不足 13,14,15。本研究旨在利用文献计量学方法对癌症领域内单细胞测序的发展趋势和突出研究课题进行全面分析。这些发现将为研究人员、临床医生和政策制定者提供该领域知识和理解现状的详细概述。
Access restricted. Please log in or start a trial to view this content.
本研究中使用的数据来自 Web of Science 核心合集 (2010-2023)。
1. 数据收集
2. 数据预处理
Access restricted. Please log in or start a trial to view this content.
出版物和引用的年度增长趋势
从 2010 年到 2023 年,WoSCC 数据库中共确定了 6,767 篇与癌症单细胞测序相关的出版物。2010 年至 2023 年间发表的 602 项研究被排除在分析之外,随后排除了 5 项未以英文发表的研究。此外,根据预定义的排除标准排除了 480 篇文章,包括 361 篇会议摘要、83 篇社论材料和 36 篇归类为其他类别的文章。最终,本研究纳入了 5,680 篇文?...
Access restricted. Please log in or start a trial to view this content.
文献计量分析是评估重要出版物的特点和学术影响的定量方法26.本研究对 5,680 篇与癌症研究中单细胞测序相关的文章进行了广泛的文献计量分析,这些文章摘自 WoSCC 数据库,并于 2010 年至 2023 年间发表。该分析旨在评估研究现状,确定关键研究热点,并阐明新兴趋势,为研究人员和政策制定者提供可作的见解。
根据出版物和引用?...
Access restricted. Please log in or start a trial to view this content.
作者没有什么可披露的。
没有。
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
bibliometrix package | Comprehensive R Archive Network (CRAN) | bibliometrix 4.3.0 | A forest plot that allows for multiple confidence intervals per row, custom fonts for each text element, custom confidence intervals, text mixed with expressions, and more. |
CiteSpace | Chaomei Chen, Drexel University | CiteSpace 6.2.R4 (64-bit) beta Basic | CiteSpace is a scientific literature analysis tool. Its main function is to analyze the underlying knowledge in scientific literature through visual means, showing the structure, rules and distribution of scientific knowledge. The main functions of CiteSpace include: research collaboration analysis , important journal judgment , core topic mining and so on. |
dplyr | Comprehensive R Archive Network (CRAN) | dplyr 1.1.4 | dbplyr is the database backend for dplyr. It allows you to use remote database tables as if they are in-memory data frames by automatically converting dplyr code into SQL. |
esquisse | Comprehensive R Archive Network (CRAN) | esquisse 2.0.1 | This addin allows you to interactively explore your data by visualizing it with the ggplot2 package. It allows you to draw bar plots, curves, scatter plots, histograms, boxplot and sf objects, then export the graph or retrieve the code to reproduce the graph. |
forcats | Comprehensive R Archive Network (CRAN) | forcats 1.0.0 | R uses factors to handle categorical variables, variables that have a fixed and known set of possible values. Factors are also helpful for reordering character vectors to improve display. The goal of the forcats package is to provide a suite of tools that solve common problems with factors, including changing the order of levels or the values. |
ggplot2 | Comprehensive R Archive Network (CRAN) | ggplot2 3.5.1 | ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details. |
ggpmisc | Comprehensive R Archive Network (CRAN) | ggpmisc 0.6.1 | Package ‘ggpmisc’ (Miscellaneous Extensions to ‘ggplot2’) is a set of extensions to R package ‘ggplot2’ (>= 3.0.0) with emphasis on annotations and plotting related to fitted models. Estimates from model fit objects can be displayed in ggplots as text, tables or equations. Predicted values, residuals, deviations and weights can be plotted for various model fit functions. |
ggsci | Comprehensive R Archive Network (CRAN) | ggsci 3.2.0 | ggsci offers a collection of ggplot2 color palettes inspired by scientific journals, data visualization libraries, science fiction movies, and TV shows. |
openxlsx | Comprehensive R Archive Network (CRAN) | openxlsx 4.2.7.1 | This R package simplifies the creation of .xlsx files by providing a high level interface to writing, styling and editing worksheets. Through the use of Rcpp, read/write times are comparable to the xlsx and XLConnect packages with the added benefit of removing the dependency on Java. |
readxl | Comprehensive R Archive Network (CRAN) | readxl 1.4.3 | The readxl package makes it easy to get data out of Excel and into R. Compared to many of the existing packages (e.g. gdata, xlsx, xlsReadWrite) readxl has no external dependencies, so it’s easy to install and use on all operating systems. It is designed to work with tabular data. |
reshape2 | Comprehensive R Archive Network (CRAN) | reshape2 1.4.4 | Reshape2 is a reboot of the reshape package. It's been over five years since the first release of reshape, and in that time I've learned a tremendous amount about R programming, and how to work with data in R. Reshape2 uses that knowledge to make a new package for reshaping data that is much more focused and much much faster. |
stringr | Comprehensive R Archive Network (CRAN) | stringr 1.5.1 | Strings are not glamorous, high-profile components of R, but they do play a big role in many data cleaning and preparation tasks. The stringr package provides a cohesive set of functions designed to make working with strings as easy as possible. |
tidytext | Comprehensive R Archive Network (CRAN) | tidytext 0.4.2 | Using tidy data principles can make many text mining tasks easier, more effective, and consistent with tools already in wide use. Much of the infrastructure needed for text mining with tidy data frames already exists in packages like dplyr, broom, tidyr, and ggplot2. In this package, we provide functions and supporting data sets to allow conversion of text to and from tidy formats, and to switch seamlessly between tidy tools and existing text mining packages. Check out our book to learn more about text mining using tidy data principles |
tidyverse | Comprehensive R Archive Network (CRAN) | tidyverse 2.0.0 | The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures. |
VennDiagram | Comprehensive R Archive Network (CRAN) | VennDiagram 1.7.3 | VennDiagram is a R package for generating high-resolution, customizable Venn diagrams with up to four sets and Euler diagrams with up to three sets. Includes handling for several special cases including two-case scaling, and extensive customization of plot shape and structure. |
VOSviewer | Centre for Science and Technology Studies, Leiden University, The Netherlands | VOSviewer version 1.6.19 | VOSviewer is a software tool for constructing and visualizing bibliometric networks. These networks may for instance include journals, researchers, or individual publications, and they can be constructed based on citation, bibliographic coupling, co-citation, or co-authorship relations. VOSviewer also offers text mining functionality that can be used to construct and visualize co-occurrence networks of important terms extracted from a body of scientific literature. |
Access restricted. Please log in or start a trial to view this content.
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。