Sign In

33.14 : Standing Waves in a Cavity

A household microwave and lasers are examples of standing electromagnetic waves in a cavity. When two conducting metal plates are placed parallel at the nodal planes, it creates a cavity where standing waves are formed. The cavity between the two planes is analogous to a stretched string held at the points x = 0 and x = L. Here, the distance 'L' between the two planes must be an integer multiple of half of the wavelength. The wavelengths that satisfy this condition are given by:

Equation1

The corresponding frequencies are:

Equation2

Each characteristic frequency, wave shape, and node pattern constitutes a set of normal modes. The wavelength can be estimated by measuring the node positions, and if the frequency is known, the wave speed can also be determined.

Apart from conducting surfaces, the reflection of electromagnetic waves can also occur at an interface between two insulating materials with different dielectric or magnetic properties. The mechanical analog is a junction of two strings with equal tension but different linear mass density. Typically, a wave incident on such a boundary surface is partly transmitted into the second material and partly reflected back into the first. For instance, light is transmitted through a glass window, but its surfaces also reflect the light.

Tags
Standing WavesElectromagnetic WavesCavityConducting Metal PlatesNodal PlanesWavelengthFrequencyNormal ModesWave SpeedNode PositionsReflectionDielectric PropertiesMagnetic PropertiesWave TransmissionBoundary Surface

From Chapter 33:

article

Now Playing

33.14 : Standing Waves in a Cavity

Electromagnetic Waves

678 Views

article

33.1 : Electromagnetic Waves

Electromagnetic Waves

8.1K Views

article

33.2 : Generating Electromagnetic Radiations

Electromagnetic Waves

2.1K Views

article

33.3 : The Electromagnetic Spectrum

Electromagnetic Waves

11.4K Views

article

33.4 : Electromagnetic Wave Equation

Electromagnetic Waves

829 Views

article

33.5 : Plane Electromagnetic Waves I

Electromagnetic Waves

3.3K Views

article

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

2.9K Views

article

33.7 : Propagation Speed of Electromagnetic Waves

Electromagnetic Waves

3.2K Views

article

33.8 : Electromagnetic Waves in Matter

Electromagnetic Waves

2.8K Views

article

33.9 : Energy Carried By Electromagnetic Waves

Electromagnetic Waves

2.7K Views

article

33.10 : Intensity Of Electromagnetic Waves

Electromagnetic Waves

4.0K Views

article

33.11 : Momentum And Radiation Pressure

Electromagnetic Waves

1.8K Views

article

33.12 : Radiation Pressure: Problem Solving

Electromagnetic Waves

208 Views

article

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.2K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved