监控电线圈内的热热点在电力传导领域至关重要,因为它能够更好地了解设备运行状况、剩余使用寿命和接近设计限制。该电机技术基于光纤传感对多路复用电磁免疫和功率的应用,对电盘结构内的热热点进行监测。本视频中描述的高级 FPG 传感性能独一无二,不能像传统传感器(如主动热组)的应用,也无法与基于电阻的热估计技术的应用非常不同。
FBG 传感器本身对热和机械激发有响应,并且很脆弱。因此,它们在带电线圈结构的紧密热传感中的应用需要本协议中解释的特殊程序。首先根据目标线圈结构和检测系统功能确定传感器设计和规格。
此处显示的测试线圈是电机线圈的典型标准 IEEE H 类电机。在设计传感屏幕时,可确保光纤传感光纤在伤口线圈传感应用中典型的热和机械环境中保持运行。使用标准弯曲不敏感的聚酰胺单模光纤可确保传感器能够在超过 200 摄氏度的温度下工作,并且具有允许弯曲以符合所需线圈几何形状的机械性能。
在此应用中,将在四个测试线圈横截面中心位置安装四个热传感点。各个传感位置是根据其对电机的潜在热监测标准确定的。感应头之间的距离基于线圈几何形状和选择的传感位置。
接下来,指定单个 FBG 磁头的长度为 5 毫米,其等级为不同波长,带宽从 1529 到 1560 纳米不等,以匹配用过的商业询问器额定值,并防止移动波长干扰。这里的总纤维长度指定为1.5米。初始 1.2 米以特氟隆封装,允许连接到外部询问器设备。
3 米的附加长度包含四个未包装的传感头。此视频显示的是指定的阵列传感器,该传感器是商业制造的。首先,从 FC/APC 接头上拆下保护盖。
然后用光学连接器清洁剂轻轻擦拭连接器端面,清洁连接器端面。接下来,确保钥匙道正确对齐,并插入已清洁的 FBG 探头接头到询问器通道连接器。打开询问器并运行配置软件。
在仪器设置选项卡上,观察 FBG 阵列探头的反射波长频谱。应在相关通道频谱中观察到四个峰值。在软件中,将采样频率设置为 10 赫兹,并在 FBG 之间设置频谱边界,以防止测量干扰。
然后,在测量设置中,将 FBG 头名称为 FBG-1、FBG-2、FBG-3 和 FBG-4。选择波长作为在此阶段以图形方式呈现的数量类型。使用窥视毛细管适当包装 FBG 头印在阵列光纤中的传感区域。
这将保护玻璃纤维,并确保传感头与机械激发隔离,并产生一个专门热激发响应传感器。将足够长的商业窥视管切到目标线圈结构的长度,多加几厘米,以便插入光纤并覆盖特氟隆以窥视毛细管接头。接下来,仔细测量 FBG 阵列和窥视毛细管,以准确识别窥视毛细管外表面的感应位置。
这允许在电机测试线圈内的目标位置定位 FBG 感应头。然后,准备一个适当大小的收缩管供以后使用。将光纤感应区域插入窥视毛细管,并使用卡普顿胶带保持窥视和特氟隆连接。
通过将封装的FBG阵列传感器插入热室以提取其离散温度与波长点,校准该传感器。FBG 阵列传感区域基于线圈几何形状而形成。接下来,将分级光纤连接到询问器,并启动预配置的询问器软件例程。
以热稳态点的顺序操作烤箱,根据阵列中每个 FBG 的测量反射波长创建一个表。对于每一个恒定的温度,在室内模拟它。然后,使用记录的移动波长与温度测量来确定最佳温度波长移动拟合曲线及其每个 FBG 的系数。
在询问器软件的相关设置中输入计算系数,以便从 FBG 阵列进行在线温度测量。首先,构建和检测电机随机缠绕线圈。为此,在风向器装置中设置选定的 H 类带名铜线卷轴,并绕风一半的线圈以低速转动。
然后,使用卡普顿胶带将准备好的窥视毛细管安装到线圈中心。正确定位后,绕风线圈的其余部分转动。将成品线圈放入电机机架中。
接下来,绑定电机线圈和绕组。将 FBG 阵列连接到询问器后,小心地将感应区域光纤插入窥视毛细管,直到 Teflon 和窥视毛细管的端开口接触。移动收缩管以盖住毛细管末端,并适当地头,直到达到所需的配合。
要开始静态测试,请将电机连接到直流电源并连接直流电源,以将电机注入直流电流。记录测量值,直到电机线圈热平衡达到。接下来,执行不均匀的热条件测试。
对于此测试,首先将包含 20 圈的外部线圈绕到选定的测试线圈部分。当外部线圈连接到单独的直流电源时,使用静态测试中使用的相同直流电流为电机通电。达到热平衡后,开始记录热测量。
最后,通过向测试线圈提供局部热激发,为外部线圈通电,以提供非均匀的热条件。达到热平衡后停止记录测量。在此具有代表性的静态热测试中,四个内部温度读数由相应的线圈位置的各阵列 FBG 头进行。
读数非常相似,记录的单个测量值小于 1.5 摄氏度之间略有变化。一旦外部 20 转线圈被打开,以模拟线圈结构中的不均匀线圈条件,在热测量中观察到明显的变化,线圈内部温度的再分配。感应点和最接近外部线圈 FBG4 的测量最高热水平和最远的传感点 FBG 2 测量得最低。
观测到的读数清楚地与单个感应头分布的变化、检查的测试线圈几何形状有关。这演示了线圈嵌入阵列传感器的功能功能,通过监控和识别随机缠绕线圈中的热热点分布。在这段视频中,我们演示了使用 FBG 技术的单光纤如何能够对电线圈结构中的热热点进行分布式测量。
使用传统传感器实现这一目标将极具挑战性。为确保测量准确,请特别注意包装、安装、校准程序。这些都需要减轻热机械 FBG 交叉灵敏度,保护光纤,并允许进行可靠的热读数。
报告的技术为在传统传感器受到挑战的能源转换设备中开发专用原位热监测应用提供了新的机会。