Forschung
Lehre
Lösungen
Anmelden
DE
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Turkish
JA - Japanese
Université de Strasbourg,
Architecture et Réactivité de l’ARN,
UPR 9002,
CNRS,
Université de Strasbourg, Architecture et Réactivité de l’ARN, UPR 9002, CNRS
Bernard Lorber has not added Biography.
If you are Bernard Lorber and would like to personalize this page please email our Author Liaison for assistance.
Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination.
Acta crystallographica. Section D, Biological crystallography Apr, 2002 | Pubmed ID: 11914489
Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature.
Proteins Aug, 2002 | Pubmed ID: 12112683
Crystallization in the presence of glycerol displaces water molecules in the structure of thaumatin.
Acta crystallographica. Section D, Biological crystallography Dec, 2002 | Pubmed ID: 12454465
The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures?
Biochimica et biophysica acta Sep, 2002 | Pubmed ID: 12479400
Structure of thaumatin in a hexagonal space group: comparison of packing contacts in four crystal lattices.
Acta crystallographica. Section D, Biological crystallography Jan, 2004 | Pubmed ID: 14684896
The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis.
Molecular cell Oct, 2007 | Pubmed ID: 17964262
tRNA-dependent asparagine formation in prokaryotes: characterization, isolation and structural and functional analysis of a ribonucleoprotein particle generating Asn-tRNA(Asn).
Methods (San Diego, Calif.) Feb, 2008 | Pubmed ID: 18241796
Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
Journal of molecular biology Sep, 2008 | Pubmed ID: 18602926
Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum.
The Journal of biological chemistry Jul, 2009 | Pubmed ID: 19443655
Isolation, crystallization and preliminary X-ray analysis of the transamidosome, a ribonucleoprotein involved in asparagine formation.
Acta crystallographica. Section F, Structural biology and crystallization communications Jun, 2009 | Pubmed ID: 19478435
Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities.
Biophysical journal Jun, 2010 | Pubmed ID: 20513398
Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.
Journal of molecular biology Sep, 2011 | Pubmed ID: 21820443
The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code.
Nucleic acids research Jun, 2012 | Pubmed ID: 22362756
Protein analysis by dynamic light scattering: methods and techniques for students.
Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology Nov-Dec, 2012 | Pubmed ID: 23166025
Differential modes of peptide binding onto replicative sliding clamps from various bacterial origins.
Journal of medicinal chemistry Sep, 2014 | Pubmed ID: 25170813
Nanobody-mediated resistance to Grapevine fanleaf virus in plants.
Plant biotechnology journal 02, 2018 | Pubmed ID: 28796912
Interaction of a Model Peptide on Gram Negative and Gram Positive Bacterial Sliding Clamps.
ACS infectious diseases 06, 2019 | Pubmed ID: 30912430
A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography.
IUCrJ May, 2019 | Pubmed ID: 31098026
Structural Analysis of RNA by Small-Angle X-ray Scattering.
Methods in molecular biology (Clifton, N.J.) , 2020 | Pubmed ID: 32006316
Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss.
Proceedings of the National Academy of Sciences of the United States of America 05, 2020 | Pubmed ID: 32371486
Institut de Biologie Moléculaire et Cellulaire
Raphaël de Wijn1,4,
Kévin Rollet1,2,
Vincent Olieric3,
Oliver Hennig2,
Nicola Thome1,
Camille Noûs1,
Caroline Paulus1,
Bernard Lorber1,
Heike Betat2,
Mario Mörl2,
Claude Sauter1
1Université de Strasbourg, Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire,
2Biochemistry and Molecular Biology, Institute for Biochemistry, Leipzig University,
3, Paul Scherrer Institute, Swiss Light Source,
4, European XFEL GmbH
Datenschutz
Nutzungsbedingungen
Richtlinien
Kontakt
BIBLIOTHEKS-EMPFEHLUNG
JoVE-Newsletter
JoVE Journal
Methodensammlungen
JoVE Encyclopedia of Experiments
Archiv
JoVE Core
JoVE Business
JoVE Science Education
JoVE Lab Manual
Ressourcen für Lehrende
Autoren
Bibliothekare
Zugang
ÜBER JoVE
Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten