Anmelden

Metallic bonds are formed between two metal atoms. A simplified model to describe metallic bonding has been developed by Paul Drüde called the “Electron Sea Model”. 

Electron Sea Model

Most metal atoms do not possess enough valence electrons to enter into an ionic or covalent bonding. However, the valence electrons in metal atoms are loosely held due to their low electronegativity or attraction with the nucleus. The ionization energy of metal atoms (energy required to remove an electron from the atom) is low, facilitating the easy removal of valence electrons from the parent atom. The atom forms a positively charged metal ion, while the free outer electrons exist as negatively charged delocalized electron clouds. These electrons can be shared by multiple neighboring metal-cations through a strong, attractive force between these negatively and positively charged species. Such an attractive force between the negatively charged electrons and metal cations is called metallic bonds, holding the atoms together. This electron sea model accounts for most physical properties of metals such as conductance to heat and electricity, high melting and boiling points, malleability, and ductility.

Metallic Solids

The electron sea model accounts for several metallic properties, including high thermal and electrical conductivity, metallic luster, ductility, and malleability. The delocalized electrons can conduct both electricity and heat from one end of the metal to another with low resistance. The metallic bond is not between two specific metal atoms, but between metal ions and many delocalized electrons, allowing metals to deform under pressure and heat without shattering or breaking. Different metals, such as iron, mercury, or copper, differ in their physical properties, reflecting the difference in metallic bond strength among the metals.

Metallic solids such as crystals of copper, aluminum, and iron are formed by metal atoms: all exhibit high thermal and electrical conductivity, metallic luster, and malleability. Many are very hard and quite strong. Because of their malleability (the ability to deform under pressure or hammering), they do not shatter and, therefore, make useful construction materials. The melting points of the metals vary widely. Mercury is a liquid at room temperature, and the alkali metals melt below 200 °C. Several post-transition metals also have low melting points, whereas the transition metals melt at temperatures above 1000 °C. These differences reflect differences in the strength of metallic bonding among the metals.

This text is adapted from Openstax, Chemistry 2e, Section 10.5: The Solid State of Matter.

Tags

JoVE CoreJoVE Core Chemistry Chapter 9JoVE Core Chemistry Lesson 1068

Aus Kapitel 9:

article

Now Playing

9.14 : Bindungen bei Metallen

Chemische Bindungen: Grundlegende Konzepte

44.5K Ansichten

article

9.1 : Arten chemischer Bindungen

Chemische Bindungen: Grundlegende Konzepte

74.0K Ansichten

article

9.2 : Lewis-Symbole und die Oktettregel (Erdgasregel)

Chemische Bindungen: Grundlegende Konzepte

59.0K Ansichten

article

9.3 : Ionenbindung und Elektronentransfer

Chemische Bindungen: Grundlegende Konzepte

38.7K Ansichten

article

9.4 : Der Born-Haber-Kreisprozess

Chemische Bindungen: Grundlegende Konzepte

21.3K Ansichten

article

9.5 : Trends in der Gitterenergie: Ionengröße und Ladung

Chemische Bindungen: Grundlegende Konzepte

23.4K Ansichten

article

9.6 : Kovalente Bindung und Lewis-Strukturen

Chemische Bindungen: Grundlegende Konzepte

45.9K Ansichten

article

9.7 : Elektronegativität

Chemische Bindungen: Grundlegende Konzepte

64.1K Ansichten

article

9.8 : Bindungspolarität, Dipol-Moment und prozentualer Ionencharakter

Chemische Bindungen: Grundlegende Konzepte

28.2K Ansichten

article

9.9 : Lewis-Strukturen molekularer Verbindungen und mehratomiger Ionen

Chemische Bindungen: Grundlegende Konzepte

34.0K Ansichten

article

9.10 : Resonanz

Chemische Bindungen: Grundlegende Konzepte

50.6K Ansichten

article

9.11 : Formelle Ladungen

Chemische Bindungen: Grundlegende Konzepte

31.9K Ansichten

article

9.12 : Ausnahmen von der Oktettregel

Chemische Bindungen: Grundlegende Konzepte

26.8K Ansichten

article

9.13 : Bindungsenergien und Bindungslängen

Chemische Bindungen: Grundlegende Konzepte

24.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten