Anmelden

Intermolecular forces (IMF) are electrostatic attractions arising from charge-charge interactions between molecules. The strength of the intermolecular force is influenced by the distance of separation between molecules. The forces significantly affect the interactions in solids and liquids, where the molecules are close together. In gases, IMFs become important only under high-pressure conditions (due to the proximity of gas molecules). Intermolecular forces dictate the physical properties of substances, such as their melting point, boiling point, density, and enthalpies of fusion and vaporization. When a liquid is heated, the thermal energy acquired by its molecules overcomes the IMFs that hold them in place, and the liquid boils (converts into the gaseous state). Boiling points and melting points depend on the type and strength of the intermolecular forces. For example, a high boiling liquid, like water (H2O, b.p. 100 °C), exhibits stronger intermolecular forces compared to a low boiling liquid, like hexane (C6H14, b.p. 68.73 °C).

While intermolecular forces exist between molecules, intramolecular forces exist within molecules and hold the atoms in a given molecule together. Intramolecular forces keep a molecule intact; a change in the state of a substance does not affect intramolecular interactions. For example, although the melting of ice partially disrupts the intermolecular forces between solid H2O molecules, thereby rearranging them and converting ice into liquid water, it does not break down individual H2O molecules.

Intramolecular forces may be ionic, covalent, or metallic in nature.

Atoms gain (nonmetals) or lose electrons (metals) to form ions (anions and cations) with particularly stable electron configurations. Compounds composed of ions are called ionic compounds (or salts), and their constituent ions are held together by ionic bonds: electrostatic forces of attraction between oppositely charged cations and anions. For example, magnesium chloride (MgCl2) is an ionic compound composed of magnesium cations and chloride anions held together by strong ionic bonds.

A covalent bond (nonpolar or polar) is formed when electrons are shared between atoms, and a molecule is formed. Nonpolar covalent bonds arise when atoms share electrons equally, such as in hydrogen (H2). Polar covalent bonds form due to unequal sharing of electrons; one atom exerts a stronger force of attraction on the electrons than the other. An example is hydrogen chloride, HCl.

Metallic solids such as crystals of copper, aluminum, and iron are formed by metal atoms. The atoms within such a metallic solid are held together by a unique force known as metallic bonding that gives rise to many useful and varied bulk properties.

Intermolecular forces are much weaker compared to intramolecular forces. For example, to overcome the IMFs in one mole of liquid HCl and convert it into gaseous HCl requires only about 17 kilojoules. However, to break the covalent bonds between the hydrogen and chlorine atoms in one mole of HCl requires about 25 times more energy, which is 430 kilojoules.

This text is adapted from Openstax, Chemistry 2e, Chapter 10: Liquids and Solids.

Tags
Intermolecular ForcesIntramolecular ForcesChemical SubstancesAtomsIonsElectrostatic InteractionCovalent BondIonic BondMetallic BondValence ElectronsNonmetal AtomsPositive Metal IonsDelocalized Valence ElectronsElectrostatic InteractionsNonbonding InteractionsIntermolecular ForcesPhysical PropertiesMelting PointBoiling PointIon dipole ForcesDipole dipole ForcesHydrogen Bonding

Aus Kapitel 11:

article

Now Playing

11.2 : Intermolecular vs Intramolecular Forces

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

83.3K Ansichten

article

11.1 : Molekularer Vergleich von Gasen, Flüssigkeiten und Feststoffen

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

39.5K Ansichten

article

11.3 : Intermolekulare Kräfte

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

54.6K Ansichten

article

11.4 : Vergleich intermolekularer Kräfte: Schmelzpunkt, Siedepunkt und Mischbarkeit

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

43.2K Ansichten

article

11.5 : Oberflächenspannung, Kapillarwirkung und Viskosität

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

27.0K Ansichten

article

11.6 : Phasenübergänge

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

18.3K Ansichten

article

11.7 : Phasenübergänge: Verdampfung und Kondensation

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

16.7K Ansichten

article

11.8 : Dampfdruck

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

33.6K Ansichten

article

11.9 : Clausius-Clapeyron-Gleichung

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

54.4K Ansichten

article

11.10 : Phasenübergänge: Schmelzen und Gefrieren

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

12.0K Ansichten

article

11.11 : Phasenübergänge: Sublimation und Abscheidung

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

16.4K Ansichten

article

11.12 : Heiz- und Kühlkurven

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

21.7K Ansichten

article

11.13 : Phasendiagramme

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

37.9K Ansichten

article

11.14 : Strukturen von Volumenkörpern

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

13.3K Ansichten

article

11.15 : Molekular und ionisch Feststoff

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

16.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten