JoVE Logo

Anmelden

11.12 : Heating and Cooling Curves

When a substance—isolated from its environment—is subjected to heat changes, corresponding changes in temperature and phase of the substance is observed; this is graphically represented by heating and cooling curves.

For instance, the addition of heat raises the temperature of a solid; the amount of heat absorbed depends on the heat capacity of the solid (q = mcsolidΔT). According to thermochemistry, the relation between the amount of heat absorbed or released by a substance, q, and its accompanying temperature change, ΔT, is:

First-order logic diagram with formulas, showing logical relationships and quantifiers.

where m is the mass of the substance, and c is its specific heat. The relation applies to matter being heated or cooled, but not changing state.

When the temperature is high enough, the solid begins to melt (Figure 1, point A). The heat absorbed depends on the solid’s heat capacity (q = mcsolidΔT), and a plateau is observed at its melting point. The plateau indicates a change of state from solid to liquid, during which the temperature does not rise due to the heat of fusion (q = mΔHfusion). In other words, further heat gain is a result of diminishing intermolecular attractions, instead of increasing molecular kinetic energies. Consequently, while a substance is changing state, its temperature remains constant.

Once the solid has completely melted (Figure 1, point B), the liquid starts warming and experiences a rise in temperature. The heat absorbed depends on the liquid's heat capacity (q = mcliquidΔT). When the liquid reaches its boiling point, the liquid begins to vaporize (Figure 1, point C) and the temperature remains constant despite the continued input of heat. Another plateau (constant temperature) is observed at the liquid's boiling point during the liquid to gas transition due to the heat of vaporization (q = mΔHvap). This same temperature is maintained by the liquid as long as it is boiling. If heat is provided at a greater rate, the liquid's temperature does not rise, but instead, the boiling becomes more vigorous (rapid). After all the liquid has vaporized (Figure 1, point D), the temperature of the gas increases.

Phase change process, heating curve diagram with q=mcΔT, nΔH equations shows heat transfer stages.

Figure 1. The representative heating curve for a substance depicts changes in temperature that result as the substance absorbs increasing amounts of heat. Plateaus in the curve (regions of constant temperature) are exhibited when the substance undergoes phase transitions.

This text is adapted from Openstax, Chemistry 2e, Section 10.3: Phase Transitions.

Tags

HeatingCoolingSubstanceTemperature ChangesPhase ChangesThermal EnergyTransition PointHeat AbsorptionPhase TransitionIntermolecular ForcesHeating CurveCooling CurveSpecific Heat CapacityMelting PointSolid liquid Equilibrium

Aus Kapitel 11:

article

Now Playing

11.12 : Heating and Cooling Curves

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

22.4K Ansichten

article

11.1 : Molekularer Vergleich von Gasen, Flüssigkeiten und Feststoffen

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

40.4K Ansichten

article

11.2 : Intermolekulare vs. intramolekulare Kräfte

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

86.4K Ansichten

article

11.3 : Intermolekulare Kräfte

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

57.5K Ansichten

article

11.4 : Vergleich intermolekularer Kräfte: Schmelzpunkt, Siedepunkt und Mischbarkeit

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

43.8K Ansichten

article

11.5 : Oberflächenspannung, Kapillarwirkung und Viskosität

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

27.4K Ansichten

article

11.6 : Phasenübergänge

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

18.7K Ansichten

article

11.7 : Phasenübergänge: Verdampfung und Kondensation

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

17.2K Ansichten

article

11.8 : Dampfdruck

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

34.2K Ansichten

article

11.9 : Clausius-Clapeyron-Gleichung

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

55.7K Ansichten

article

11.10 : Phasenübergänge: Schmelzen und Gefrieren

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

12.3K Ansichten

article

11.11 : Phasenübergänge: Sublimation und Abscheidung

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

16.7K Ansichten

article

11.13 : Phasendiagramme

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

39.5K Ansichten

article

11.14 : Strukturen von Volumenkörpern

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

14.0K Ansichten

article

11.15 : Molekular und ionisch Feststoff

Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte

16.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten