Anmelden

The formation of a solution is an example of a spontaneous process, a process that occurs under specified conditions without energy from some external source.

When the strengths of the intermolecular forces of attraction between solute and solvent species in a solution are no different than those present in the separated components, the solution is formed with no accompanying energy change. Such a solution is called an ideal solution. A mixture of ideal gases (or gases such as helium and argon, which closely approach ideal behavior) is an example of an ideal solution since the entities comprising these gases experience no significant intermolecular attractions.

Ideal solutions may also form when structurally similar liquids are mixed. For example, mixtures of the alcohols methanol (CH3OH) and ethanol (C2H5OH) form ideal solutions, as do mixtures of the hydrocarbons pentane, C5H12, and hexane, C6H14. Unlike a mixture of gases, however, the components of these liquid-liquid solutions do, indeed, experience intermolecular attractive forces. But since the molecules of the two substances being mixed are structurally very similar, the attractive intermolecular forces between like and unlike molecules are essentially the same, and the dissolution process, therefore, does not entail any appreciable increase or decrease in energy. These examples illustrate how increased matter dispersal alone can provide the driving force required to cause the spontaneous formation of a solution. In some cases, however, the relative magnitudes of intermolecular forces of attraction between solute and solvent species may prevent dissolution.

Consider the example of an ionic compound dissolving in water. Formation of the solution requires the electrostatic forces between the cations and anions of the compound (solute–solute) to be overcome completely as attractive forces are established between these ions and water molecules (solute-solvent). Hydrogen bonding between a relatively small fraction of the water molecules must also be overcome to accommodate any dissolved solute. If the solute’s electrostatic forces are significantly greater than the solvation forces, the dissolution process is significantly endothermic and the compound may not dissolve to an appreciable extent. On the other hand, if the solvation forces are much stronger than the compound’s electrostatic forces, the dissolution is significantly exothermic and the compound may be highly soluble.

This text is adapted from Openstax, Chemistry 2e, Section 11.1: The Dissolution Process.

Tags
Intermolecular ForcesSolutionsDispersion ForcesDipole dipole AttractionsHydrogen BondingIon dipole InteractionSoluteSolventSolute solute InteractionsSolvent solvent InteractionsSolvent solute InteractionsSalt SolutionIonic BondingWater Molecules

Aus Kapitel 12:

article

Now Playing

12.2 : Intermolecular Forces in Solutions

Lösungen und Kolloide

32.1K Ansichten

article

12.1 : Lösungsbildung

Lösungen und Kolloide

30.3K Ansichten

article

12.3 : Enthalpie der Lösung

Lösungen und Kolloide

24.2K Ansichten

article

12.4 : Wässrige Lösungen und Hydratationswärme

Lösungen und Kolloide

13.9K Ansichten

article

12.5 : Lösungsgleichgewicht und Sättigung

Lösungen und Kolloide

17.9K Ansichten

article

12.6 : Physikalische Eigenschaften, die die Löslichkeit beeinflussen

Lösungen und Kolloide

21.8K Ansichten

article

12.7 : Ausdrücken der Lösungskonzentration

Lösungen und Kolloide

57.6K Ansichten

article

12.8 : Senkung des Dampfdrucks

Lösungen und Kolloide

25.0K Ansichten

article

12.9 : Ideale Lösungen

Lösungen und Kolloide

18.4K Ansichten

article

12.10 : Gefrierpunktserniedrigung und Siedepunkterhöhung

Lösungen und Kolloide

33.1K Ansichten

article

12.11 : Osmose und osmotischer Druck von Lösungen

Lösungen und Kolloide

38.2K Ansichten

article

12.12 : Elektrolyte: van't Hoff Factor

Lösungen und Kolloide

32.0K Ansichten

article

12.13 : Kolloide

Lösungen und Kolloide

17.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten