JoVE Logo

Anmelden

18.5 : Cell Potential and Free Energy

Thermodynamics of a Redox Reaction

Thermodynamics is the branch of physics dealing with the relationship between heat and other forms of energy. In an electrochemical cell, chemical energy is converted into electrical energy.

Thus, a link can be predicted between cell potential, free energy change, and the equilibrium constant for the reaction. Cell potential can also be measured as the oxidant or the reducing strength, and similar acid-base strength measures are reflected in equilibrium constants.

Gibbs’ Free Energy and the Relationship Between E°cell  and ΔG°

The Gibbs free energy is a quantity used to calculate the maximum amount of reversible work performed by a thermodynamic system maintained at constant temperature and pressure conditions. It is denoted by the symbol G, and its change is represented as ∆G. The standard free energy change of a system, ΔG°, is defined as the maximum work performed by a system, wmax. For a redox reaction occurring within a galvanic cell under standard conditions, all the work done is associated with electron transferring from the reducing agent to the oxidizing agent, welec. Thus,

Chemical equilibrium; vector equation ΣF=0; diagram; force balance analysis; vector components.

However, any work associated with electron transfer depends on the charge transferred in Coulombs as well as the cell potential:

Chemical structure of ibuprofen, carboxylic acid, NSAID, pain relief, molecular formula, C13H18O2.

where n = the number of moles of transferred electrons, F is Faraday’s constant, which represents the coulombic charge of 1 mole of electrons, and E°cell is the standard cell potential. The relation between ΔG° and ΔE°cell confirms the sign conventions and the criteria for reaction spontaneity. Spontaneous redox reactions have positive potential and negative values of free energy.

Relationship between E°cell and K

The standard free energy change ΔG° is related to the equilibrium constant K of a redox reaction as follows:

Nitrogen oxidation, reduction mechanism; redox reaction diagram; chemical structure study.

Combining a previously derived relation between ΔG° and K and the equation relating to ΔG° and E°cell yields the following:

Static equilibrium diagram illustrating force components ΣFx=0, ΣFy=0 with labeled vectors.

Therefore,

static equilibrium, ΣFx=0, truss diagram, force analysis with joint forces and loads, engineering concept

This equation indicates that redox reactions with large or positive standard cell potentials will proceed towards completion, reaching equilibrium when most reactants have been converted to product.

Nonspontaneous reactions or reactions proceeding in reverse directions exhibit negative cell potentials, positive free energy values, and an equilibrium constant of less than one. An equilibrium constant of one and cell potential and free energy values equal to zero is associated with a reaction under equilibrium at standard conditions.

The relationship between the cell potential under standard conditions and the thermodynamic constants ΔG° and K can be explained by the figure given below:

Thermodynamics, electrochemistry relationship formula diagram; equations ΔG° = -RTlnK and ΔG° = -nFE°cell.

Figure 1: Graphic depicting the relation between three important thermodynamic properties.

This text is adapted from Openstax,Chemistry 2e, Section 17.4: Potential, Free Energy, and Equilibrium.

Tags

Cell PotentialFree EnergyRedox ReactionSpontaneityStandard Gibbs Free EnergyZinc copper Galvanic CellElectron FlowElectrical WorkJoulesCharge TransferredCoulombsMoles Of ElectronsFaraday s ConstantMaximum Electrical WorkSystem Performing Work On The Surroundings

Aus Kapitel 18:

article

Now Playing

18.5 : Cell Potential and Free Energy

Elektrochemie

39.2K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten