JoVE Logo

Anmelden

7.3 : Long-patch Basen-Exzisionsreparatur

Since the discovery of the two BER pathways, there has been a debate about how a cell chooses one pathway over the other and the factors determining this selection. Numerous in vitro experiments have pointed out multiple determinants for the sub-pathway selection. These are:

  1. Lesion type: Depending on the type of base damage, a specific DNA glycosylase - mono or bifunctional, is recruited to the damaged site. While the sequential action of a monofunctional glycosylase favors long patch repair events, the bifunctional glycosylase drives short-patch BER.
  1. State of the cell cycle: The major protein participants that distinguish the long-patch BER from the alternative pathway of short-patch BER are proliferating cell nuclear antigen (PCNA), protein replication factor C (RF-C), and the flap structure-specific endonuclease 1 (FEN1). PCNA is particularly recognized as the lynchpin of this pathway. It acts both as the scaffold to anchor the polymerase at the damaged site and binds to FEN-1 to facilitate its nuclease activity. Furthermore, RF-C is required to load the PCNA onto the DNA. All of these proteins are also required during DNA replication, suggesting that long-patch BER mends damages to replicating DNA while short-patch is used for repairing resting DNA.
  1. ATP shortage: It has also been observed that while single nucleotide or short patch BER predominates under normal physiological conditions, under conditions of ATP shortage, the preference is shifted towards long-patch BER. This is because poly(ADP-ribose) can serve as a unique source of ATP during the ligation step in BER.

Tags

Long patch Base Excision RepairATP ShortageDNA PolymeraseNucleotidesFlapOligonucleotidesProliferating Cell Nuclear AntigenPCNAFlap EndonucleaseDNA LigaseIonizing RadiationBER PathwaysSub pathway SelectionDNA GlycosylaseMonofunctional GlycosylaseBifunctional GlycosylaseCell Cycle

Aus Kapitel 7:

article

Now Playing

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

29.7K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.8K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.1K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.7K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.9K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

9.0K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.9K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

15.1K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.3K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

12.1K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.3K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten