Anmelden

Translesion (TLS) polymerases rescue stalled DNA polymerases at sites of damaged bases by replacing the replicative polymerase and installing a nucleotide across the damaged site. Doing so, TLS allows additional time for the cell to repair the damage before resuming regular DNA replication.

TLS polymerases are found in all three domains of life - archaea, bacteria, and eukaryotes. Of the different classes of TLS polymerases, members of the Y family are fitted with specialized structures that are optimized to carry out TLS DNA synthesis.

Despite sharing structural similarities, Y family polymerases differ from replicative polymerases in certain key ways that allow them to perform TLS. Y family polymerases lack the intrinsic 3′-to-5′ exonuclease domain of replicative DNA polymerases that allows them to proofread the newly replicated strand. Another key difference is the larger and more open active site of Y family TLS polymerases that can fit bulky, chemically modified bases, including covalently linked bases in a thymine-thymine dimer.

During TLS DNA synthesis, TLS polymerase must extend the strand beyond the insertion across the damaged site. If the replicative polymerase is reinstated right after the TLS polymerase inserts a base, the 3’ to 5’ exonuclease proofreading activity of the replicative polymerase will recognize and remove the inserted base. The length of extension by the TLS polymerase depends on the pathway followed. For a non-mutagenic pathway, the number of insertion maybe 5, while for a frameshift pathway, the insertion will be 4 nucleotides-long.

Tags
Translesion DNA PolymerasesSliding ClampReplicative PolymeraseDNA SynthesisDamaged Base Or RegionSpecialized EnzymesUbiquitin Or SUMO ProteinsModificationTLS PolymeraseTranslesion DNA SynthesisNucleotide InsertionLesionDNA ReplicationDamage ToleranceMutations

Aus Kapitel 7:

article

Now Playing

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

26.9K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.3K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.0K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

8.9K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.5K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.5K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

14.8K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.1K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.1K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten