로그인

Translesion (TLS) polymerases rescue stalled DNA polymerases at sites of damaged bases by replacing the replicative polymerase and installing a nucleotide across the damaged site. Doing so, TLS allows additional time for the cell to repair the damage before resuming regular DNA replication.

TLS polymerases are found in all three domains of life - archaea, bacteria, and eukaryotes. Of the different classes of TLS polymerases, members of the Y family are fitted with specialized structures that are optimized to carry out TLS DNA synthesis.

Despite sharing structural similarities, Y family polymerases differ from replicative polymerases in certain key ways that allow them to perform TLS. Y family polymerases lack the intrinsic 3′-to-5′ exonuclease domain of replicative DNA polymerases that allows them to proofread the newly replicated strand. Another key difference is the larger and more open active site of Y family TLS polymerases that can fit bulky, chemically modified bases, including covalently linked bases in a thymine-thymine dimer.

During TLS DNA synthesis, TLS polymerase must extend the strand beyond the insertion across the damaged site. If the replicative polymerase is reinstated right after the TLS polymerase inserts a base, the 3’ to 5’ exonuclease proofreading activity of the replicative polymerase will recognize and remove the inserted base. The length of extension by the TLS polymerase depends on the pathway followed. For a non-mutagenic pathway, the number of insertion maybe 5, while for a frameshift pathway, the insertion will be 4 nucleotides-long.

Tags
Translesion DNA PolymerasesSliding ClampReplicative PolymeraseDNA SynthesisDamaged Base Or RegionSpecialized EnzymesUbiquitin Or SUMO ProteinsModificationTLS PolymeraseTranslesion DNA SynthesisNucleotide InsertionLesionDNA ReplicationDamage ToleranceMutations

장에서 7:

article

Now Playing

7.5 : 손상통과 DNA 중합효소

DNA 복구/회복과 재조합

9.6K Views

article

7.1 : DNA 복구/회복 개요

DNA 복구/회복과 재조합

27.1K Views

article

7.2 : 염기 절제 복구

DNA 복구/회복과 재조합

21.4K Views

article

7.3 : 긴 패치 염기 절제 복구

DNA 복구/회복과 재조합

6.9K Views

article

7.4 : 뉴클레오타이드 절제 복구

DNA 복구/회복과 재조합

11.0K Views

article

7.6 : 두 가닥 절단 복구

DNA 복구/회복과 재조합

11.8K Views

article

7.7 : DNA 손상에 의한 세포 주기 중단

DNA 복구/회복과 재조합

8.9K Views

article

7.8 : 상동재조합

DNA 복구/회복과 재조합

49.5K Views

article

7.9 : 멈춘 복제 분기점의 재시작

DNA 복구/회복과 재조합

5.7K Views

article

7.10 : 유전자 전환

DNA 복구/회복과 재조합

9.5K Views

article

7.11 : 전위와 재조합 개요

DNA 복구/회복과 재조합

14.8K Views

article

7.12 : DNA 한정 트랜스포존

DNA 복구/회복과 재조합

14.1K Views

article

7.13 : 레트로바이러스

DNA 복구/회복과 재조합

11.8K Views

article

7.14 : LTR 레트로트랜스포존

DNA 복구/회복과 재조합

17.1K Views

article

7.15 : 비LTR 레트로트랜스포존

DNA 복구/회복과 재조합

11.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유