Anmelden

The double-stranded structure of DNA has two major advantages. First, it serves as a safe repository of genetic information where one strand serves as the back-up in case the other strand is damaged. Second, the double-helical structure can be wrapped around proteins called histones to form nucleosomes, which can then be tightly wound to form chromosomes. This way, DNA chains up to 2 inches long can be contained within microscopic structures in a cell. A double-stranded break not only damages both copies of genetic information but also disrupts the continuity of DNA, making the chromosome fragile.

In a cell, there are an estimated ten double-strand breaks (DSBs) per day. The primary source of damage is metabolic by-products such as Reactive Oxygen Species and environmental factors such as ionizing radiations. Although less common, malfunctioning nuclear enzymes can also cause DSBs. Failure of enzymes like type II topoisomerases, which cut both strands of DNA and rejoin them while disentangling chromosomes, can inadvertently result in DSBs. Mechanical stress on the DNA duplex can also lead to DSBs. In prokaryotes, prolonged desiccation strains DNA, causing DSBs.

Of the two mechanisms for DNA repair, homologous recombination depends on a sister chromatid being nearby, which happens during the S and G2 phases. Due to this restriction, in the absence of a homology donor, cells have to resort to Nonhomologous end joining (NHEJ), even though it is much less accurate. It has been hypothesized that the reason higher eukaryotes can afford to preferentially utilize NHEJ for DSB repairs is that they have abundant non-coding DNA, which permits nucleotide substitutions, deletions or additions without grievous consequences.

Tags
Double strand BreaksDNA RepairNon homologous End JoiningDNA End binding Heterodimeric Protein KuDNA dependent Protein KinaseDNA PolymeraseDNA Ligase IVMutationsGenomic RearrangementsHomologous RecombinationSingle stranded Overhangs

Aus Kapitel 7:

article

Now Playing

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

26.9K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.3K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.0K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

8.9K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.5K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.5K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

14.8K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.1K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.1K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten