JoVE Logo

Anmelden

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA replication is initiated at sites containing predefined DNA sequences known as origins of replication. DNA is unwound at these sites by the minichromosome maintenance (MCM) helicase and other factors such as Cdc45 and the associated GINS complex.The unwound single strands are protected by replication protein A (RPA) until DNA polymerase starts synthesizing DNA at the 5’ end of the strand in the same direction as the replication fork. To prevent the replication fork from falling apart, a fork protection complex (FPC) travels with the growing fork. This conserved protein complex can be found in eukaryotes and is composed of proteins like Tim, Tipin, And1, and Claspin.

In the laboratory, replication forks can be stalled by the action of hydroxyurea. Hydroxyurea depletes the cellular pools of dNTPs, which are needed by DNA polymerase for DNA synthesis. When dNTPs are unavailable, DNA synthesis slows down and ultimately stops completely. Thus, the stalling of replication forks in living cells is linked to the inactivity of DNA polymerase.

FPC links the activity of the polymerase with that of the helicase. So even when the polymerase stops, the helicase keeps unwinding the DNA to produce an excess of single-stranded DNA (ssDNA) before coming to a halt. This excess ssDNA resembles resected overhangs from double-stranded break repair. To stabilize the structure, RPA proteins bind to the ssDNA and recruits the ATR proteins. ATR binding activates the cell cycle regulator protein Chk1 to block the firing of replication origins and stall the cell cycle for DNA repair. Thus, ssDNA serves as a potent signal that connects DNA damage to repair.

Tags

Replication ForkDNA PolymeraseHelicaseRPARad9 Rad1 Hus1 ComplexATRChk1Cdc25Rad51SMARCAL1Fork ReversalFork RegressionBRCA2

Aus Kapitel 7:

article

Now Playing

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

29.5K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.7K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.1K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.7K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.9K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

9.0K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.8K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

15.1K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.3K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

12.1K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.2K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten