Anmelden

Retroviruses and retrotransposons both insert copies of their genetic elements into the genome of the host cell. Thus, the viral genes are passed on when the host genome is replicated or translated. A typical retroviral DNA sequence contains 3-4 genes that encode the different proteins required for its structural assembly and function as a molecular parasite. This DNA is transcribed into a single mRNA, which is very similar in structure to conventional mRNAs, i.e., it is capped at the 5’ terminal and has a polyadenylated 3’ end. Thus, the host cell’s ribosome translates the retroviral mRNA into a single chain of polyproteins. Some retroviruses use virus-encoded proteases to process this single chain into the proteins required for virion assembly. The retroviral mRNA is then packaged into a core with gag proteins, encapsulated by capsid proteins. For the release of the virus from the cell, a part of the host cell membrane's lipid bilayer is pinched off to form the outer shell of the virus. The assembled virus particle is then released to carry on the cycle of infection.

The transposition-like events in the life cycle of retroviruses are not coincidental. Present-day retroviruses are proposed to have evolved from the foamy virus, an ancient line of retroviruses that lived in the ocean. Vertebrates such as fish contained retrotransposons of genes encoding envelope proteins that captured the foamy viruses.

The close relationship between retrotransposons and retroviruses exist even today. The main distinguishing factor between the two is that although retrotransposons can form capsid proteins, they cannot synthesize viral envelopes. Therefore, no mature virus particles are formed, and the retrotransposons cannot be horizontally transferred from one cell to another.

Sequencing the human genome has revealed that 8% of the human genome contains retroviral elements, though they are in a latent state. These elements are considered to be “fossils” of ancient retroviruses and are immensely helpful in understanding not only viral but vertebral evolution as well.

Tags
RetrovirusesTranspositionPathogensHijackHost CellGenomeRetrovirusLipid EnvelopedCore Protein ShellCapsidViral ProteinsEnzymesRNA GenomeGroup specific AntigenGag ProteinsEnvelope ProteinsPol ProteinsReverse Transcriptase EnzymeIntegraseRNase HInfecting A CellFusion With Host Cell MembraneProviral DNAEndogenous RetrovirusesExogenous Retroviruses

Aus Kapitel 7:

article

Now Playing

7.13 : Retroviren

DNA-Reparatur und Rekombination

11.6K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

26.8K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.3K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

10.9K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

8.9K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.4K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.5K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

14.8K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.0K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.1K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten