JoVE Logo

Anmelden

Because the DNA segments are cut and reorganized in a direction-specific manner, site-specific recombination has emerged as an efficient genetic engineering technique. Flippase and Cyclization recombinases or Flp and Cre, respectively, are two members of the tyrosine recombinase family derived from bacteriophages, that are used to mediate site-specific DNA insertions, deletions, and targeted expression of proteins in mammalian cell lines.

The recognition sites for Cre recombinase called LoxP sites are around 34 basepairs in length. LoxP sites contain 13 bp palindromic sequences, meaning that the nucleotide sequence reads the same in both 5’ to 3’ and 3’ to 5’ directions. Site-specific recombination mediated by Cre recombinases is one of the most popular methods used in the creation of transgenic mice with acquired mutations. Using thermostable variants of Cre recombinase with tissue specific promoters allows for spatial control over Cre recombinase's expression and action. For instance, placing a kidney-specific Cadherin promoter upstream of the Cre gene allows the enzyme to be expressed only in renal tissues. For temporal control of Cre recombinase activity, the enzyme gene is fused with a ligand binding domain so that the enzyme is expressed only in the specific ligand’s presence.

A major limitation in using site-specific recombination as a genome editing tool is that the recombination target site or sites must be first inserted or must be present by chance. If a genomic site congruent with the enzyme recognition site can be preselected, the recombinases can be used with “made-to-order” target specificity. Recent studies have used mutagenesis and gene shuffling to design Flp variants that can functionally recognize sites with combinatorial mutations. The results are promising for future iterations of gene shuffling that can yield more specific Flp variants and can be used commercially as a molecular tool for engineering large genomes.

Tags

Conservative Site specific RecombinationPhase VariationGenetic ExchangeSite specific RecombinasesDNA SectionsSequence HomologySymmetric SequencesSerine RecombinaseTyrosine RecombinaseEnzyme MechanismsSynaptic ComplexCrossover SitesStrand ExchangeCovalent BondingHolliday Junction IntermediateCleaved DNA Strands

Aus Kapitel 7:

article

Now Playing

7.16 : Konservative ortsspezifische Rekombination und Phasenvariation

DNA-Reparatur und Rekombination

5.9K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

29.5K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.7K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.1K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.7K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.9K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

9.0K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.8K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

15.1K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.3K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

12.1K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten