Anmelden

Transcription activators are proteins that promote the transcription of genes from DNA to RNA. In most cases, these proteins contain two separate domains ‒ a domain that binds to DNA and a domain for activating transcription; however, in some cases, a single domain is responsible for both binding and activation of transcription, as seen in the glucocorticoid receptor and MyoD.

The binding domains are capable of recognizing and interacting with regulatory sequences on the DNA. These domains are classified into different families and named according to the structural characteristics that enable DNA recognition and binding. Some common types of binding domains include the leucine zipper, zinc finger, and helix-turn-helix motifs. In contrast, domains responsible for gene transcription activation are usually short, simple sequences and are less complex than the binding domains. They are classified by amino acid composition into categories, such as glutamine-rich, proline-rich, and alanine-rich.

Transcription activators aid in the recruitment of various proteins required for transcription such as general transcription factors, RNA polymerase, and co-activators. All these proteins together are known as the pre-initiation complex and depend on transcription activators for their recruitment to the appropriate location. These activators can bind to a site close to the gene’s promoter or several thousand base pairs away from the gene to carry out their function. In cases where they are bound to a site away from the gene, they rely on the flexibility of the DNA to bend and bring them in proximity to the gene promoter. Transcription activators are also required to continue a transcript’s elongation or the re-initiation of transcription in cases when the process stops midway. Transcription activators are known to act synergistically. The transcription achieved by the action of multiple activators is higher than what would occur as a sum of individual factors working separately.

Like other proteins, transcription activators are subject to post-transcriptional modifications. In many cases these modifications help in positive regulation of transcription. For example, acetylation of p53, an activator that regulates genes responsible for tumor suppression, increases its ability to bind to DNA.

Tags
EukaryoticTranscription ActivatorsRNA PolymeraseDNA binding DomainsHelix turn helixZinc FingerLeucine ZipperDimersMajor GrooveAlpha HelixBeta SheetZinc AtomHistidinesMonomersY ShapeLeucineC terminal EndN terminal EndTranscription Activating DomainCo activatorsRNA Polymerase BindingHistone Modification

Aus Kapitel 10:

article

Now Playing

10.9 : Eukaryotische Transkriptionsaktivatoren

Genexpression

10.6K Ansichten

article

10.1 : Zellspezifische Genexpression

Genexpression

13.1K Ansichten

article

10.2 : Die Regulation der Expression erfolgt in mehreren Schritten

Genexpression

21.7K Ansichten

article

10.3 : Cis-regulatorische Elemente

Genexpression

9.4K Ansichten

article

10.4 : Kooperative Bindung von Transkriptionsregulatoren

Genexpression

6.1K Ansichten

article

10.5 : Prokaryotische Transkriptionsaktivatoren und -repressoren

Genexpression

20.0K Ansichten

article

10.6 : Operons

Genexpression

15.0K Ansichten

article

10.7 : Die eukaryotische Promoterregion

Genexpression

15.8K Ansichten

article

10.8 : Co-Aktivatoren und Co-Repressoren

Genexpression

7.0K Ansichten

article

10.10 : Eukaryotische Transkriptionsinhibitoren

Genexpression

9.6K Ansichten

article

10.11 : Kombinatorische Genkontrolle

Genexpression

8.0K Ansichten

article

10.12 : Induzierte pluripotente Stammzellen

Genexpression

3.4K Ansichten

article

10.13 : Master-Transkriptionsregulatoren

Genexpression

6.6K Ansichten

article

10.14 : Epigenetische Regulation

Genexpression

24.0K Ansichten

article

10.15 : Genomische Prägung und Vererbung

Genexpression

32.3K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten