Anmelden

Alkanes are nonpolar molecules due to the presence of only carbon and hydrogen atoms. The electronegativity difference between carbon and hydrogen is minimal, and hence alkanes have a zero dipole moment. This leads to the presence of only dispersion forces between the molecules. The strength of dispersion forces is dependent on the surface area of the molecules on which they act. Since the surface area increases with the molecular length for straight-chain alkanes, the dispersion forces also increase across the homologue with the increasing carbon chain length.

The dispersion forces affect the physical properties of the alkanes and vary their physical state. Based on the number of carbon atoms, the straight-chain alkanes exist in different physical states at a given temperature and pressure. Thus, the boiling point for straight-chain alkanes is directly proportional to their chain length and, in turn, is proportional to the dispersion forces. In contrast, the melting point shows an odd-even behavior, i.e., the odd and even membered alkane form a different melting point trend with increasing chain length.

Branched-chain isomers of alkanes show significant variations in their properties due to the differences in their shape and size compared to the straight-chain alkanes. For instance, in pentane, the melting point varies drastically between the straight-chain and branched forms. The straight-chain n-pentane melts at a temperature of −129.8°C, whereas the branched form iso-pentane melts at −161.0°C. Neopentane, the symmetrically branched isomer, melts at a much higher temperature of −16.5°C.

Tags

Physical PropertiesAlkanesNonpolar MoleculesCarbon And Hydrogen AtomsDipole MomentDispersion ForcesSurface AreaMolecular LengthHomologueBoiling PointMelting PointOdd even BehaviorBranched chain IsomersShape And Size

Aus Kapitel 3:

article

Now Playing

3.4 : Physical Properties of Alkanes

Alkane und Cycloalkane

10.5K Ansichten

article

3.1 : Struktur der Alkane

Alkane und Cycloalkane

26.2K Ansichten

article

3.2 : Konstitutionelle Isomere von Alkanen

Alkane und Cycloalkane

17.3K Ansichten

article

3.3 : Nomenklatur der Alkane

Alkane und Cycloalkane

20.5K Ansichten

article

3.5 : Newman-Projektionen

Alkane und Cycloalkane

15.8K Ansichten

article

3.6 : Konformationen von Ethan und Propan

Alkane und Cycloalkane

13.3K Ansichten

article

3.7 : Konformationen von Butan

Alkane und Cycloalkane

13.4K Ansichten

article

3.8 : Cycloalkane

Alkane und Cycloalkane

11.8K Ansichten

article

3.9 : Konformationen von Cycloalkanen

Alkane und Cycloalkane

11.3K Ansichten

article

3.10 : Konformationen von Cyclohexan

Alkane und Cycloalkane

11.7K Ansichten

article

3.11 : Stuhlkonformation von Cyclohexan

Alkane und Cycloalkane

13.9K Ansichten

article

3.12 : Stabilität von substituierten Cyclohexanen

Alkane und Cycloalkane

12.1K Ansichten

article

3.13 : Disubstituierte Cyclohexane: cis-trans-Isomerie

Alkane und Cycloalkane

11.5K Ansichten

article

3.14 : Verbrennungsenergie: Ein Maß für die Stabilität von Alkanen und Cycloalkanen

Alkane und Cycloalkane

6.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten